New work offers fresh evidence supporting the supernova shock wave theory of our Solar System's origin

August 3, 2017, Carnegie Institution for Science
The colors represent the relative amounts of short-lived radioactive isotopes, such as iron-60, injected into a newly formed protoplanetary disk (seen face on with the protostar being the light purple blob in the middle) by a supernova shock wave. Credit: Alan Boss.

According to one longstanding theory, our Solar System's formation was triggered by a shock wave from an exploding supernova. The shock wave injected material from the exploding star into a neighboring cloud of dust and gas, causing it to collapse in on itself and form the Sun and its surrounding planets.

New work from Carnegie's Alan Boss offers fresh evidence supporting this theory, modeling the Solar System's formation beyond the initial cloud collapse and into the intermediate stages of . It is published by the Astrophysical Journal.

One very important constraint for testing theories of Solar System formation is meteorite chemistry. Meteorites retain a record of the elements, isotopes, and compounds that existed in the system's earliest days. One type, called , includes some of the most-primitive known samples.

An interesting component of chondrites' makeup is something called short-lived radioactive isotopes. Isotopes are versions of elements with the same number of protons, but a different number of neutrons. Sometimes, as is the case with radioactive isotopes, the number of neutrons present in the nucleus can make the isotope unstable. To gain stability, the isotope releases energetic particles, which alters its number of protons and neutrons, transmuting it into another element.

Some isotopes that existed when the Solar System formed are radioactive and have decay rates that caused them to become extinct within tens to hundreds of million years. The fact that these isotopes still existed when chondrites formed is shown by the abundances of their stable decay products—also called daughter isotopes—found in some primitive chondrites. Measuring the amount of these daughter isotopes can tell scientists when, and possibly how, the chondrites formed.

A recent analysis of chondrites by Carnegie's Myriam Telus was concerned with iron-60, a short-lived radioactive isotope that decays into nickel-60. It is only created in significant amounts by nuclear reactions inside certain kinds of stars, including supernovae or what are called asymptotic giant branch (AGB) stars.

Because all the iron-60 from the Solar System's formation has long since decayed, Telus' research, published in Geochimica et Cosmochimica Acta, focused on its daughter product, nickel-60. The amount of nickel-60 found in meteorite samples—particularly in comparison to the amount of stable, "ordinary" iron-56—can indicate how much iron-60 was present when the larger parent body from which the meteorite broke off was formed. There are not many options for how an excess of iron-60—which later decayed into nickel-60—could have gotten into a primitive Solar System object in the first place—one of them being a supernova.

While her research did not find a "smoking gun," definitively proving that the radioactive were injected by a shock wave, Telus did show that the amount of Fe-60 present in the early Solar System is consistent with a supernova origin.

Taking this latest meteorite research into account, Boss revisited his earlier models of shock wave-triggered cloud collapse, extending his computational models beyond the initial collapse and into the intermediate stages of star formation, when the Sun was first being created, an important next step in tying together Solar System origin modeling and meteorite sample analysis.

"My findings indicate that a is still the most-plausible origin story for explaining the short lived in our Solar System," Boss said.

Boss dedicated his paper to the late Sandra Keiser, a long-term collaborator, who provided computational and programming support at Carnegie's Department of Terrestrial Magnetism for more than two decades. Keiser died in March.

Explore further: Solar System formation don't mean a thing without that spin

Related Stories

Solar System formation don't mean a thing without that spin

August 18, 2015

New work from Carnegie's Alan Boss and Sandra Keiser provides surprising new details about the trigger that may have started the earliest phases of planet formation in our solar system. It is published by The Astrophysical ...

Fingering the culprit that polluted the Solar System

August 2, 2012

(Phys.org) -- For decades it has been thought that a shock wave from a supernova explosion triggered the formation of our Solar System. According to this theory, the shock wave also injected material from the exploding star ...

'Little bang' triggered solar system formation

October 2, 2008

For several decades, scientists have thought that the Solar System formed as a result of a shock wave from an exploding star—a supernova—that triggered the collapse of a dense, dusty gas cloud that contracted to form ...

Solar system's youth gives clues to planet search

July 24, 2013

Comets and meteorites contain clues to our solar system's earliest days. But some of the findings are puzzle pieces that don't seem to fit well together. A new set of theoretical models from Carnegie's Alan Boss shows how ...

Recommended for you

Is dark matter made of primordial black holes?

April 20, 2018

Astronomers studying the motions of galaxies and the character of the cosmic microwave background radiation came to realize in the last century that most of the matter in the universe was not visible. About 84 percent of ...

NASA engineers dream big with small spacecraft

April 20, 2018

Many of NASA's most iconic spacecraft towered over the engineers who built them: think Voyagers 1 and 2, Cassini or Galileo—all large machines that could measure up to a school bus.

Unveiling the secrets of the Milky Way galaxy

April 20, 2018

A multinational team of astronomers involving the University of Adelaide has catalogued over 70 sources of very high energy gamma rays, including 16 previously undiscovered ones, in a survey of the Milky Way using gamma ray ...

Where is the universe's missing matter?

April 19, 2018

Astronomers using ESA's XMM-Newton space observatory have probed the gas-filled haloes around galaxies in a quest to find 'missing' matter thought to reside there, but have come up empty-handed – so where is it?

2 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

Da Schneib
5 / 5 (4) Aug 03, 2017
We'll keep looking and eventually we'll figure it all out. This is how #realscience gets done. Step by step.
wduckss
not rated yet Aug 04, 2017
"My findings indicate .. Boss said" from article

Assumptions (article) instead of science.
"Why did not iron when Earth was hot"
https://www.acade..._was_hot
"Supernovae are not our creators"
https://www.acade...creators
"Why there are differences in the structure of the objects in our system"
https://www.acade...r_system

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.