Is the "alien megastructure" around Tabby's Star actually a ringed gas giant?

August 28, 2017 by Matt Williams, Universe Today
Artist's impression of a gigantic ring system around a distant exoplanet. Credit: Ron Miller

KIC 8462852 (aka. Tabby's Star) continues to be a source of both fascination and controversy. Ever since it was first seen to be undergoing strange and sudden dips in brightness (in October of 2015) astronomers have been speculating as to what could be causing this. Since that time, various explanations have been offered, including large asteroids, a large planet, a debris disc or even an alien megastructure.

The latest suggestion for a natural explanation comes from the University of Antioquia in Colombia, where a team of researchers have proposed that both the larger and smaller drops in brightness could be the result of a ringed planet similar to Saturn transiting in front of the star. This, they claim, would explain both the sudden drops in brightness and the more subtle dips seen over time.

The study, titled "Anomalous Lightcurves of Young Tilted Exorings", recently appeared online. Led by Mario Sucerquia, a postdoctoral student at the University of Antioquia's Department of Astronomy, the team performed numerical simulations and semi-analytical calculations to determine if a the transits of a ringed could explain the recent observations made of Tabby's Star.

Currently, exoplanet-hunters use a number of methods to detect planetary candidates. One of the most popular is known as the Transit Method, where astronomers measure dips in a star's brightness caused by a planet passing between it and the observer (i.e. transiting in front of a star). How a gas giant with rings would dim a star's light was of concern here because it would do so in an irregular way.

Basically, the rings would be the first thing to obscure light coming from the star, but only to a small degree. Once the bulk of the gas giant transited the star, a significant drop would occur followed a second smaller drop as the rings on the other side passed by. But since the rings would be at a different angle every time, the smaller dips would be larger or smaller and the only way to know for sure would be to compare multiple transits.

In the past, researchers from the University of Antioquia developed a novel method for detecting rings around exoplanets ("exorings"). Essentially, they showed how an increase in the depth of a transit signal and the so-called "photo-ring" effect (often mistaken for false-positives in previous surveys) could be interpreted as signs of an exoplanet with a Saturn-like ring structure.

An artist impression of an exomoon orbiting a ringed exoplanet. Credit: Andy McLatchie

The team that devised this method was led by Jorge I. Zuluaga of the Harvard Smithsonian Center for Astrophysics (CfA), who was also a co-author on this study. To test this theory with KIC 8462852, the team simulated a light curve from a ringed planet that was about 0.1 AU from the star. What they found was that a tilted ring structure could explain the dimming effects detected from Tabby's Star in the past.

They also found that a tilted ring structure would undergo short-term changes in shape and orientation as a result of the star's gravitational tug on them. These would be apparent due to strong variations of transit depth and contact times even between consecutive transits. This too would likely be interpreted as anomalies in signal data, or lead to miscalculations of a planet's properties (i.e. radius, semi-major axis, stellar density, etc).

This is not the first time that a ringed-structure has been suggested as an explanation for the mystery that is Tabby's Star. And the team admits that there are other possible explanations, which include the possibility of an exomoon breaking up around a larger planet (i.e. leaving a debris disk). But as Sucerquia indicated in an interview with New Scientist, this latest study does offer some compelling food for thought:

"The point of this work is to show the community that there are mechanisms that can alter the light curves. These changes can be generated by the dynamics of the moons or the rings, and the changes in these systems can occur in such short scales as to be detected in just a few years."

Another interesting takeaway from the research study is the fact that oscillating ring structures could also account for the strangeness of some light-curves that are already known. In other words, its possible that astronomers have already found evidence of ringed exoplanets, and simply didn't know it. Looking ahead, it is possible that future surveys could turn up plenty more of these worlds as well.

Of course, if this study should prove to be correct, it means that what some consider our best hope of finding an alien megastructure has now been lost. Admittedly, this would be a disappointment. If there's one thing about the mystery of Tabby's Star that has been consistently intriguing, it's the fact that a megastructure couldn't be ruled out. If we have come to that point at last, there's not much more to say.

Except, perhaps, that's it's a big Universe! There's sure to be a Kardashev Type II civilization out there somewhere!

Explore further: Finally, an explanation for the "alien megastructure?"

Related Stories

Finally, an explanation for the "alien megastructure?"

January 12, 2017

Back in October of 2015, astronomers shook the world when they reported how the Kepler mission had noticed a strange and sudden drop in brightness coming from KIC 8462852 (aka. Tabby's Star). This was followed by additional ...

Giant rings around exoplanet turn in unexpected direction

October 12, 2016

Researchers from Japan and the Netherlands who were previously involved in the discovery of an exoplanet with huge rings have now calculated that the giant rings may persist more than 100,000 years, as long as the rings orbit ...

Latest study of Tabby's star offers more weirdness

August 9, 2016

A pair of researchers has added more evidence regarding the oddity of KIC 8462852, aka Tabby's Star. Benjamin Montet with the California Institute of Technology and Joshua Simon with Observatories of the Carnegie Institution ...

Recommended for you

New research challenges existing models of black holes

January 19, 2018

Chris Packham, associate professor of physics and astronomy at The University of Texas at San Antonio (UTSA), has collaborated on a new study that expands the scientific community's understanding of black holes in our galaxy ...

Neutron-star merger yields new puzzle for astrophysicists

January 18, 2018

The afterglow from the distant neutron-star merger detected last August has continued to brighten - much to the surprise of astrophysicists studying the aftermath of the massive collision that took place about 138 million ...

New technique for finding life on Mars

January 18, 2018

Researchers demonstrate for the first time the potential of existing technology to directly detect and characterize life on Mars and other planets. The study, published in Frontiers in Microbiology, used miniaturized scientific ...

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

rderkis
5 / 5 (1) Aug 28, 2017
Why would these rings change over a period of 100 years? 0.16 mag may not be statically significant but it is circumstantial evidence that somthing is changing.

"Found that Tabby's star had faded over a period of 100 years, at a rate of 0.16 magnitude per century.
KIC8462852, which has been claimed to dim by 0.16mag per century, and show that this trend cannot be considered as significant."
deblackmere
5 / 5 (2) Aug 29, 2017
I expected better reporting from this site. The continued use of "alien mega-structure" with this star reeks of click-bait reporting.
rderkis
5 / 5 (1) Aug 29, 2017
I expected better reporting from this site. The continued use of "alien mega-structure" with this star reeks of click-bait reporting.


I am probably wrong but I don't think the writers of these articles are the ones that create the title in a lot of cases.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.