Strengthening of West African Monsoon during Green Sahara period may have affected El Nino Southern Oscillation

July 10, 2017, Stockholm University

Accounting for a vegetated and less dusty Sahara reduces the variability of El Niño during the Mid-Holocene to closer to that which is observed in several paleoclimate records. This is shown by researchers at the Department of Meteorology at Stockholm University in a recent study, published in Nature Communications.

Changes in the El Niño Southern Oscillation (ENSO) - an important driver of large-scale climate variability - have broad impacts on society and eco-systems globally. Both observations and model simulations suggest that with the current trend in global warming, we may see changes in ENSO behaviour. Understanding how ENSO has varied historically and the causes of this variability is paramount for predicting the future.

Many from the warm Mid-Holocene (4,000 - 7,000 yrs BP) show that variations in ENSO were reduced by 30%-60% compared to pre-industrial times. This is not accurately captured by most climate models, which show a modest reduction of 10% using only changes in the Earth's orbital parameters.

Our study accounts for a vegetated and less dusty Sahara. This reduces the variability of the Mid-Holocene ENSO with up to 25% compared to the pre-industrial, more than twice the decrease found by using orbital forcings alone, says Francesco S.R. Pausata, researcher at the Department of Meteorology at Stockholm University (MISU).

In the study four model simulations with varying forcings were compared, from using orbital parameter changes alone to a simulation that included orbital forcings, added vegetation and reduced dust emissions. The researchers found a tight link between the intensity of the climatological West African Monsoon, the strength and position of the Walker circulation and the variability of ENSO.

The results of the study show that the strengthening of the West African Monsoon, associated with the greening of the Sahara, alters the tropical Atlantic mean state and variability. This in turn affects ENSO activity through changes in the Walker circulation, explains Francesco S.R. Pausata.

Therefore, vegetation and dust feedbacks are important players in amplifying ENSO's response to insolation forcing.

More proxy records from both the Pacific and the Atlantic Ocean are critically needed to capture the natural variability of ENSO and its teleconnections with the Atlantic basin. These will provide a better understanding of the ENSO spatio-temporal characteristics through time. Together with improved that account for vegetation and dust changes, this will improve our prediction of future climate change, Francesco S.R. Pausata concludes.

Explore further: Scientists unravel effect of ENSO and Atlantic multidecadal oscillation on the East Asian winter monsoon

More information: Francesco S. R. Pausata et al, Greening of the Sahara suppressed ENSO activity during the mid-Holocene, Nature Communications (2017). DOI: 10.1038/ncomms16020

Related Stories

El Nino is becoming more active

October 28, 2013

A new approach to analyzing paleo-climate reconstructions of the El Niño Southern Oscillation (ENSO) phenomenon resolves disagreements and reveals that ENSO activity during the 20th century has been unusually high compared ...

Review: El Nino Southern Oscillation has effects on skin

November 18, 2015

(HealthDay)—The El Niño Southern Oscillation (ENSO) climate phenomenon impacts skin and skin-related disease, according to a review published in the December issue of the International Journal of Dermatology.

Global warming's influence on El Nino still unknown

May 24, 2010

(PhysOrg.com) -- The climate of the Pacific region will undergo significant changes as atmospheric temperatures rise but scientists can not yet identify the influence it will have on the El Nino-Southern Oscillation (ENSO) ...

Recommended for you

On-chip, electronically tunable frequency comb

March 18, 2019

Lasers play a vital role in everything from modern communications and connectivity to bio-medicine and manufacturing. Many applications, however, require lasers that can emit multiple frequencies—colors of light—simultaneously, ...

Alligator study reveals insight into dinosaur hearing

March 18, 2019

To determine where a sound is coming from, animal brains analyze the minute difference in time it takes a sound to reach each ear—a cue known as interaural time difference. What happens to the cue once the signals get to ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.