Growing better trees faster

July 19, 2017
Credit: Shutterstock

A new research collaboration could significantly increase the quality and economic productivity of one of the UK's largest crop outputs, Sitka spruce conifer trees.

Using a breeding technique called 'genomic selection', researchers from the Universities of Oxford and Edinburgh and from Forest Research, an agency of the Forestry Commission, hope to accurately identify, at a very early age, fast growing trees with superior timber quality. In doing so, the 'Sitka Spruced' research initiative could improve the economic value of future spruce plantations in the UK. In addition, by enhancing the quality of the wood, harvests are more likely to meet the changing construction specifications required to build our houses.

The Sitka spruce is the UK's primary timber species, with over 35 million Sitka trees planted in the UK each year. It is the third largest crop by area of cultivation in the UK, after wheat and barley, and accounts for around £1bn of the industry's £2bn annual revenue. Fast growing and suited to the moist climate of western and northern Britain, the species produces a versatile white wood, with uses from paper making, to building construction. It takes around 40 years from planting before most Sitka spruce trees are harvested, and only a proportion of those trees meet the stronger, higher value construction grades.

The project will scan hundreds of trees for variations in their DNA and then match those variations with fast-growing trees that produce superior timber. This will enable scientists to screen the DNA of the trees, to identify the fastest growing, with the best quality timber.

Genomics is not GM, Genetic Modification, but instead exploits the huge variation that occurs naturally within a species. If successful, the same technology could potentially be used to screen for other properties, such as how they cope with challenging environments, for example, how they adapt to dry or nutrient-poor sites, and for resistance to insects and disease.

Sitka Spruced is one of the few forestry research projects to be awarded funding by the Biotechnology and Biological Science Research Council (BBSRC). The new initiative aims to overcome significant challenges facing the industry by using genomics to support accelerated tree breeding and maintenance of genetic diversity.

Professor John MacKay, Project lead and Wood Professor of Forest Science at Oxford University, said: 'I am really excited to be part of such a research landmark, breeding to increase the economic return of Sitka spruce. The funding from BBSRC is testament to the project's long-term value.

'Genomics offers unprecedented potential to shorten the tree breeding process, which is the key to reaching harvestable size earlier. With Sitka Spruced we not only aim for faster tree growth and a reduction of plantation rotation from 40 to around 30 years, but also to improve the quality of wood stocks. The economics are clear if it becomes possible to grow three rotations in the same period of time it used to take to grow two, and also to improve the wood quality.'

Professor Melanie Welham, BBSRC Chief Executive, said: 'The BBSRC receives few forestry-related research proposals and is pleased to be able to fund this project on the genetic improvement of Sitka spruce in partnership with industry. We are keen to build on the legacy of the Tree Health and Plant Biosecurity Initiative in which BBSRC led a multi-funder consortium with DEFRA, ESRC, the Forestry Commission, NERC and the Scottish Government.'

Sitka Spruced is part-funded by the British forestry and wood processing industries. Dr Steve Lee of Forest Research, said: 'The financial contribution of the forestry and wood processing industries is a very significant support to this project funded by BBSRC and we are happy to be working closely with representatives from seed merchants, nurseries, forest management companies, a breeding co-operative and a sawmill. The possible impact from the outputs of Sitka Spruced could be huge and it's encouraging to know industry is fully behind this new development.'

Spruce-Up, a Canadian sister initiative, will run alongside its UK counterpart, allowing both projects to leverage and draw on each other's international resources and compare genomic information. The knowledge base created as a result will have long term benefits and support future forest research initiatives and understanding.

Explore further: Climate change can alter the impact of forest pathogens in trees

More information: Melissa H. Mageroy et al, Expression of the β-glucosidase genePgβglu-1underpins natural resistance of white spruce against spruce budworm, The Plant Journal (2015). DOI: 10.1111/tpj.12699

Related Stories

The black forest and climate change

June 30, 2017

As the climate change progresses, droughts are expected to become more and more common and more intense in Europe, as in many parts of the globe. However, many plants are not able to handle this kind of climate. This includes ...

Forest tree seeds stored in the Svalbard seed vault

February 26, 2015

A new method for the conservation of the genetic diversity of forest trees will see its launch on 26 February 2015, as forest tree seeds are for the first time stored in the Svalbard Global Seed Vault on the Spitsbergen Island, ...

Recommended for you

The world needs to rethink the value of water

November 23, 2017

Research led by Oxford University highlights the accelerating pressure on measuring, monitoring and managing water locally and globally. A new four-part framework is proposed to value water for sustainable development to ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.