Thousands of genes exchanged within microbial communities living on cheese

July 25, 2017, University of California - San Diego
Emmental cheese. Credit: Wikipedia

Researchers at the University of California San Diego have found that microbial species living on cheese have transferred thousands of genes between each other. They also identified regional hotspots where such exchanges take place, including several genomic "islands" that host exchanges across several species of bacteria.

Postdoctoral fellow Kevin Bonham and assistant professor Rachel Dutton of UC San Diego's Division of Biological Sciences, along with Benjamin Wolfe, a former postdoctoral fellow in the Dutton lab now at Tufts University, use the rinds of artisanal varieties as simple model systems to study microbiomes, or communities of microorganisms. Microbiomes are known to play a key function in many areas, including , protecting us from some diseases and amplifying others.

Cheese rinds offer a novel way to study how genes in are passed from one organism to another in a process known as "." Details of the study were published July 25th in the journal eLife.

"We examined the genomes of over 150 bacteria from cheese, and found more than 4,000 genes that were shared between bacterial species, including several large genomic islands that were shared by many species," said Dutton, an assistant professor in the Molecular Biology Section and part of UC San Diego's Center for Microbiome Innovation, which leverages the university's strengths in clinical medicine, bioengineering, computer science, the biological and physical sciences, data sciences and other areas to coordinate and accelerate microbiome research. "Horizontal gene transfer has been studied for decades, but examining it in a more natural context is challenging because it requires studying an entire community of microbes, rather than studying them in isolation."

Dutton said a large percentage of transferred involved functions dealing with acquiring nutrients, especially iron, which is known to be in short supply on the surface of cheese. Competition for iron is an important theme for microbes in many environments, including during infections of humans by pathogenic microbes.

"Horizontal gene transfer could influence competition for iron and possibly enable 'cheating' within a mixed community," said Dutton.

Based on the new results, Dutton and her colleagues are now probing the intricate dynamics of horizontal gene transfer and how the process unfolds on cheese.

"Since horizontal gene transfer is prevalent in many microbial communities, including those important for human health, we're now trying to study how this process impacts microbial life and death in a community," said Dutton.

Explore further: Researchers study cheese to unlock secrets of how microbial communities form

More information: Kevin S Bonham et al, Extensive horizontal gene transfer in cheese-associated bacteria, eLife (2017). DOI: 10.7554/eLife.22144

Related Stories

Molecular biologist talks cheese

April 22, 2016

While many microbiologists build entire research careers around studies of a single microorganism, Rachel Dutton has taken her career in the other direction—examining collections of microbes, but with an unusual twist. ...

The life and times of domesticated cheese-making fungi

September 24, 2015

People sure love their cheeses, but scientists have a lot to learn about the fungi responsible for a blue cheese like Roquefort or a soft Camembert. Now researchers reporting in the Cell Press journal Current Biology on September ...

Recommended for you

The melodious mouse that sings for sex

April 25, 2018

A small, brown mouse found in the forests of Central America bucks the rodent trend of conversing in high-pitched squeaks often inaudible to the human ear.

Fungus senses gravity using gene borrowed from bacteria

April 24, 2018

The pin mold fungus Phycomyces blakesleeanus forms a dense forest of vertically growing fruiting bodies, but how does it know which way is "up"? New research publishing 24 April in the open access journal PLOS Biology, from ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.