Team studies mechanism of H. influenzae biofilm formation

July 13, 2017, Nationwide Children's Hospital

A research study identifying novel bacterial physiology in the creation of biofilms by Nationwide Children's Hospital scientists has been published in the current issue of Proceedings of the National Academy of Sciences (PNAS).

The laboratory of Lauren Bakaletz, PhD, director, Center for Microbial Pathogenesis and vice president of basic sciences, The Research Institute at Nationwide Children's, studied the biofilm construction capabilities of nontypeable Haemophilus influenzae (NTHI), a bacterium responsible for sinusitis, pneumonia, exacerbations of cystic fibrosis and COPD, bronchitis and ear infections.

Biofilms are large 3D communities of that adhere to body surfaces and protect bacteria from such as antibiotics and antibodies. The lab found that when H. influenzae builds its biofilms, it does so via an active and regulated means while remaining intact, unlike other bacteria which self-sacrifice in order to contribute to the biofilm. Other types of bacteria either explode, sending their DNA into the biofilm, or shuttle their DNA out into the environment through a syringe-like appendage produced by the bacterium, all to benefit the potency of the biofilm.

The novel mechanism by which nontypeable H. influenzae releases DNA through an inner membrane pore complex that partners with another complex in the outer membrane allows DNA to be ejected out into the , via a previously unidentified process.

"We're very excited that our work with biofilms has been accepted for publication by the Proceedings of the National Academy of Sciences," says Dr. Bakaletz. "Our lab hopes to use what we've learned about H. influenzae biofilms to identify vaccine targets as well as improve existing methods of therapeutic treatment for the diseases of the respiratory tract caused by this prevalent pathogen."

Explore further: Researchers develop effective strategy for disrupting bacterial biofilms

More information: Joseph A. Jurcisek et al, Nontypeable Haemophilus influenzae releases DNA and DNABII proteins via a T4SS-like complex and ComE of the type IV pilus machinery, Proceedings of the National Academy of Sciences (2017). DOI: 10.1073/pnas.1705508114

Related Stories

Biofilms—the eradication has begun

June 22, 2017

Have you ever heard of biofilms? They are slimy, glue-like membranes that are produced by microbes, like bacteria and fungi, in order to colonize surfaces. They can grow on animal and plant tissues, and even inside the human ...

Recommended for you

How do horses read human emotional cues?

June 21, 2018

Scientists have demonstrated for the first time that horses integrate human facial expressions and voice tones to perceive human emotion, regardless of whether the person is familiar or not.

Not junk: 'Jumping gene' is critical for early embryo

June 21, 2018

A so-called "jumping gene" that researchers long considered either genetic junk or a pernicious parasite is actually a critical regulator of the first stages of embryonic development, according to a new study in mice led ...

Fish's use of electricity might shed light on human illnesses

June 21, 2018

Deep in the night in muddy African rivers, a fish uses electrical charges to sense the world around it and communicate with other members of its species. Signaling in electrical spurts that last only a few tenths of a thousandth ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.