Team uses airborne telescopes to study Sun and Mercury during total solar eclipse

July 25, 2017, Southwest Research Institute
During the upcoming total solar eclipse, a team led by Southwest Research Institute will observe the solar corona using stabilized telescopes aboard two of NASA’s WB-57 research aircraft. This vantage point provides distinct advantages over ground-based observations, as illustrated by this composite photo of the aircraft and the 2015 total solar eclipse at the Faroe Islands. Credit: Southwest Research Institute

A team led by Southwest Research Institute will use airborne telescopes aboard NASA research aircraft to study the solar corona and Mercury's surface during this summer's total solar eclipse. The August 21 observations will provide the clearest images to date of the Sun's outer atmosphere and attempt the first-ever "thermal images" of surface temperature variations on Mercury.

Total solar eclipses are unique opportunities for scientists to study the hot atmosphere above the Sun's visible . The faint light from the corona is usually overpowered by intense emissions from the Sun itself. During a total eclipse, however, the Moon blocks the glare from the bright solar disk and darkens the sky, allowing the weaker coronal emissions to be observed.

"By looking for high-speed motion in the , we hope to understand what makes it so hot. It's millions of degrees Celsius, hundreds of times hotter than the visible surface below," said Dr. Amir Caspi, principal investigator of the project and a senior research scientist in SwRI's Boulder, Colorado, office. "In addition, the corona is one of the major sources of electromagnetic storms here at Earth. These phenomena damage satellites, cause power grid blackouts, and disrupt communication and GPS signals, so it's important to better understand them."

Why is the Sun's so much hotter than its surface? Perhaps the Sun's magnetic field carries energy into the corona and converts it into heat. Or perhaps nanoflares or nanojets—explosions or eruptions too small and numerous to see individually—are constantly releasing small amounts of energy that combine to heat the entire corona. The team will use high-speed, high-definition video of the corona to look for fast, coherent motions that could help solve this puzzle. The project may also shed light on another question: why the magnetic structures in the corona are relatively smooth and stable.

"The magnetic field forms well organized loops and arcades in the lower corona, as well as large, fan-shaped structures extending out to many solar radii," said Dr. Craig DeForest, a co-investigator also from SwRI's Boulder office. "These structures are constantly being churned and tangled by the motion of the solar surface itself. So why does the corona always appear well organized, like a recently-coiffed head of hair, and not snarled or matted?"

From two of NASA's WB-57 research aircraft, the team will observe the during the eclipse using stabilized telescopes with sensitive, high-speed, visible-light and infrared cameras at 50,000 feet. This high altitude provides distinct advantages over ground-based observations.

"Being above the weather guarantees perfect observing conditions, while being above more than 90 percent of Earth's atmosphere gives us much better image quality than on the ground," said another SwRI co-investigator, Dr. Constantine Tsang. "This mobile platform also allows us to chase the eclipse shadow, giving us over 7 minutes of totality between the two planes, compared to just 2 minutes and 40 seconds for a stationary observer on the ground."

These are the first astronomical observations for the WB-57s. Southern Research, which is located in Birmingham, Alabama, built the Airborne Imaging and Recording Systems onboard and is working with the scientific team to upgrade its DyNAMITE telescopes on both planes with solar filters and improved data recorders.

"This airborne platform also provides us with higher-quality, higher-speed images than are achievable from current or previous space-borne instruments," said Caspi. "It highlights the potential of the WB-57 platform for future astronomical observations."

Eclipse observations also give the team a unique opportunity to study Mercury, the planet closest to the Sun. Mercury is difficult to observe because it is usually washed out by the bright daytime sky, or distorted by the atmosphere near the horizon at twilight.

"We plan to measure Mercury in the infrared, in near darkness, and through very little atmosphere," Tsang said. Scientists hope to use infrared measurements to calculate surface temperatures over the planet's entire night side. "How the temperature changes across the surface gives us information about the thermophysical properties of Mercury's soil, down to depths of about a few centimeters, something that has never been measured before."

Explore further: Chasing the Total Solar Eclipse from NASA's WB-57F jets

Related Stories

Chasing the Total Solar Eclipse from NASA's WB-57F jets

July 25, 2017

For most viewers, the Aug. 21, 2017, total solar eclipse will last less than two and half minutes. But for one team of NASA-funded scientists, the eclipse will last over seven minutes. Their secret? Following the shadow of ...

Eclipse science along the path of totality

July 24, 2017

Leading U.S. solar scientists today highlighted research activities that will take place across the country during next month's rare solar eclipse, advancing our knowledge of the Sun's complex and mysterious magnetic field ...

NASA's science during the March 2016 total solar eclipse

March 4, 2016

As the moon slowly covers the face of the sun on the morning of March 9, 2016, in Indonesia, a team of NASA scientists will be anxiously awaiting the start of totality – because at that moment, their countdown clock begins. ...

Hinode to support ground-based eclipse observations

November 13, 2012

(Phys.org)—On Nov. 13, 2012, certain parts of Earth will experience a total solar eclipse, which, like all eclipses, will only be visible when you are aligned in a straight line with the moon and the sun. In this case the ...

Recommended for you

Meteorite source in asteroid belt not a single debris field

February 17, 2019

A new study published online in Meteoritics and Planetary Science finds that our most common meteorites, those known as L chondrites, come from at least two different debris fields in the asteroid belt. The belt contains ...

Diagnosing 'art acne' in Georgia O'Keeffe's paintings

February 17, 2019

Even Georgia O'Keeffe noticed the pin-sized blisters bubbling on the surface of her paintings. For decades, conservationists and scholars assumed these tiny protrusions were grains of sand, kicked up from the New Mexico desert ...

Archaeologists discover Incan tomb in Peru

February 16, 2019

Peruvian archaeologists discovered an Incan tomb in the north of the country where an elite member of the pre-Columbian empire was buried, one of the investigators announced Friday.

Where is the universe hiding its missing mass?

February 15, 2019

Astronomers have spent decades looking for something that sounds like it would be hard to miss: about a third of the "normal" matter in the Universe. New results from NASA's Chandra X-ray Observatory may have helped them ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.