Refined DNA tool tracks native and invasive fish

July 17, 2017 by Blaine Friedlander
Kristy Deiner samples the water from Juday Creek, Granger, Indiana to conduct research on environmental DNA. Credit: Mat Seymour/Provided

Rather than conduct an aquatic roll call with nets to know which fish reside in a particular body of water, scientists can now use DNA fragments suspended in water to catalog invasive or native species.

The research from Cornell, the University of Notre Dame and Hawaii Pacific University was published July 14 in Methods in Ecology and Evolution.

"We've sharpened the environmental DNA (eDNA) tool, so that if a river or a lake has threatened, endangered or , we can ascertain genetic detail of the there," said senior author David Lodge, the Francis J. DiSalvo Director of the Atkinson Center for a Sustainable Future at Cornell, and professor of ecology and evolutionary biology. "Using eDNA, scientists can better design management options for eradicating invasive species, or saving and restoring endangered species."

Additionally, by sampling DNA fragments in water and using (PCR) technology, which acts like a genetic copying machine to make billions of copies of the DNA for study, scientists can collect habitat data without the need to capture fish.

Research begins with a small water sample from a stream, lake or river. "Fish have millions of cells, and when they swim they leave a trail of cells behind. So, we're using the whole mitochondrial genome of these cells to track fish," said Kristy Deiner, a Cornell postdoctoral researcher and a co-lead author on the paper.

Biologists have commonly assumed that fish DNA extracted from water bodies is of poor quality and highly degraded. As it turns out, the new study is the first to show the opposite is true. In a stream, for example, large strands of fish DNA remain intact.

"We're getting closer to what forensic scientists do at a crime scene every day. They're not interested in whether any humans were at a crime scene, they're interested in knowing which humans were at the ," said Lodge.

As an example, Lodge said, Asian carp have long been an invasive species in Chicago's canal system. "All we could say was 'Yes, there are Asian carp here,'" he said. "With this technological breakthrough, we are getting closer to learning how many there are – based on the genetic differences between individuals – and potentially even where they came from. Then, researchers can gauge the situational danger and ask, 'Can we close off the source of these invasive fish?'"

On using this technology, Deiner said, "If we catch an invasion early enough, for example, it's possible to eradicate the population and prevent the invasion from continuing."

Explore further: Intensive fishing finds no more Asian carp beyond barrier

More information: Kristy Deiner et al. Long-range PCR allows sequencing of mitochondrial genomes from environmental DNA, Methods in Ecology and Evolution (2017). DOI: 10.1111/2041-210X.12836

Related Stories

Asian carp DNA not widespread in the Great Lakes

April 4, 2013

Scientists from the University of Notre Dame, The Nature Conservancy, and Central Michigan University presented their findings of Asian carp DNA throughout the Great Lakes in a study published in the Canadian Journal of Fisheries ...

Efforts to close canal to Great Lakes

August 8, 2011

Efforts are underway to try and get the river locks on the Chicago Sanitary and Ship Canal closed in order to stop the spread of two invasive species of fish known as the Asian carp and the Snakehead.

Recommended for you

New discovery challenges long-held evolutionary theory

October 19, 2017

Monash scientists involved in one of the world's longest evolution experiments have debunked an established theory with a study that provides a 'high-resolution' view of the molecular details of adaptation.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.