How proteins bring together membrane blebs

Researchers have gained new insights into the mechanisms with which certain proteins help the immune defence mechanism in the human body. Pathogens such as viruses or bacteria are wrapped in membrane blebs and rendered harmless there. What are known as guanylate-binding proteins are crucial in this. How they contribute to the process that was investigated by researchers from Ruhr-Universität Bochum, the Paul-Ehrlich-Institut and the University of Cologne, together with other partners from Erlangen and Geneva.

The team led by Prof Dr Christian Herrmann and Dr Sergii Shydlovskyi from the Bochum cluster of excellence Resolv and Dr Gerrit Praefcke, formerly of the University of Cologne, now at the Paul-Ehrlich-Institut in Langen, reports on the study in the journal Proceedings of the National Academy of Sciences.

Precursor of vesicle fusion

With a combination of cell biology and biochemical experiments, the researchers explored the function of human guanylate-binding 1 (hGBP1). In cells, it interacts with the energy storage molecule GTP, from which it can split off one or two phosphate groups, in order to release energy.

In the current study, the researchers discovered that hGBP1 uses energy released during splitting to change its structure: it unveils a lipid anchor. Using this anchor, it can form larger ring-shaped polymers with other hGBP1 proteins. With the aid of artificial vesicles, the team also found that hGBP1 uses the anchor to bind to the vesicle membrane. In this way, it brings together many such membrane blebs, which the researchers assume could be a precursor to vesicle fusion.

Demonstrated in cells

This kind of fusion is crucial for the immune defence mechanism: pathogens are trapped in the in vesicles, which merge with certain cell organelles, lysosomes. The latter contain enzymes that degrade pathogens. In the current study, the team also demonstrated that the protein hGBP1 in living is actually involved in the signal path, which leads via the lysosomes to the degradation of viruses and bacteria.

More information: Sergii Shydlovskyi et al. Nucleotide-dependent farnesyl switch orchestrates polymerization and membrane binding of human guanylate-binding protein 1, Proceedings of the National Academy of Sciences (2017). DOI: 10.1073/pnas.1620959114

Citation: How proteins bring together membrane blebs (2017, July 3) retrieved 19 July 2024 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Research describes missing step in how cells move their cargo


Feedback to editors