Physicists observe individual atomic collisions during diffusion for the first time

July 3, 2017, Technische Universität Kaiserslautern

In the world of research, diffusion is understood as a process in which tiny particles disperse uniformly throughout a gas or liquid. Although these media are made up of individual particles, diffusion is perceived as a continuous process. So far, the effects of an individual collision between particles – the cornerstone of diffusion – had not been observed. Now, physicists in Kaiserslautern and Erlangen have succeeded in observing the fundamental steps of diffusion by individual atoms in a gas and have provided a theoretical description of this mechanism. The study has been published in the renowned journal Physical Review Letters.

Almost two hundred years ago, the Scottish doctor and researcher Robert Brown observed that particles of pollen quiver as they move through a liquid. Tiny particles, such as molecules or atoms, exhibit similar behaviour as they disperse within gases and liquids. Resulting from a huge number of random collisions, the particles show a zigzag pattern of movements causing various substances to mix. Scientists refer to these zigzag movements as "Brownian motion" and to the dispersion and mixing of various substances as diffusion.

"Diffusion is a key phenomenon in many areas of science and forms the basis for numerous transport processes, for example in living cells or energy storage devices," says Professor Artur Widera, who conducts research into the quantum physics of individual atoms and ultracold quantum gases at TU Kaiserslautern. "That's why it's important to have an understanding of diffusion processes in almost every area of the life sciences, the natural sciences, and technological development."

An easy, simplified understanding of diffusion can be obtained by disregarding the individual collisions between particles. "In this context, we also talk of a continuous medium with, for example, a larger particle diffusing into it. This simplification becomes all the more accurate as the mass of the particles in the medium becomes smaller and the frequency of collisions becomes higher," says Dr. Michael Hohmann, who is researcher in Professor Widera's group and first author of this study. One everyday example is fog, which can also be viewed as a medium of this kind although it actually consists of tiny individual water droplets.

For their experiments, the physicists working under Widera tweaked the conditions that characterise a continuous medium: "Instead of large particles, such as pollen, we studied the diffusion of that have almost the same mass as atoms of the gas. Furthermore, we used a very cold, dilute gas in order to drastically reduce the frequency of collisions," explains Hohmann. By doing so, the Kaiserslautern-based researchers observed, for the first time, how caesium atoms diffuse at a temperature close to absolute zero in a gas made up of rubidium atoms. "These are temperatures that no refrigerator can reproduce, so we used laser beams to cool the atoms and hold them in place in a vacuum apparatus. This slowed the down to such an extent that the effect of individual collisions could be observed," explains Professor Widera with regard to the experimental setup.

For the theoretical description of the experiment, the researchers in Kaiserslautern received assistance from their colleague Professor Eric Lutz, a professor of theoretical physics at the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), who helped them to develop the mathematical modelling. "With the new model, we can now describe the ' motions more accurately," says the Erlangen-based researcher. Together, they showed that it is sufficient to alter the coefficient of friction in the theoretical calculation from the continuous model. By doing so, it is also possible to describe cases that do not involve a continuous medium, as in the above experiment. Examples of such cases include when aerosols – mixtures of suspended – disperse in thin layers of air in the upper atmosphere, in interstellar space or in vacuum systems.

Explore further: Physicists observe diffusion of individual atoms in light bath

More information: Michael Hohmann et al. Individual Tracer Atoms in an Ultracold Dilute Gas, Physical Review Letters (2017). DOI: 10.1103/PhysRevLett.118.263401

Related Stories

Elusive atomic motion captured by electron microscopy

May 9, 2017

The movement of atoms through a material can cause problems under certain circumstances. Atomic-resolution electron microscopy has enabled researchers at Linköping University in Sweden to observe for the first time a phenomenon ...

Partitioning by collision

February 5, 2016

An ensemble consisting of a binary mixture of particles of equal size can partition itself into its component fractions - provided that the two species differ in their diffusion constants.

The hidden order in DNA diffusion

June 7, 2017

A different approach to analyzing the motion of diffusing molecules has helped overturn the long-held assumption that DNA molecules move in a haphazard way. KAUST researchers reveal for the first time that DNA molecules move ...

Quantum-physical model system

April 7, 2017

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment with ultracold atoms. Using computer-assisted methods, Prof. Dr ...

Stirred, not shaken: Physicists gain more particle control

March 22, 2013

Cornell physicists can now precisely control how particles in viscous liquids swirl, twirl and whirl. Think of coffee and adding cream—and gaining control of the particles in the cream. Understanding this concept could ...

Recommended for you

Diagnosing breast cancer using red light

March 23, 2018

Optical Mammography, or OM, which uses harmless red or infrared light, has been developed for use in conjunction with X-rays for diagnosis or monitoring in cases demanding repeated imaging where high amounts of ionizing radiation ...

Designing a new material for improved ultrasound

March 22, 2018

Development of a theoretical basis for ultrahigh piezoelectricity in ferroelectric materials led to a new material with twice the piezo response of any existing commercial ferroelectric ceramics, according to an international ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.