NASA mission surfs through waves in space to understand space weather

July 24, 2017 by Mara Johnson-Groh, NASA's Goddard Space Flight Center
The two populations of hiss, low and high frequency, inhabit two separate regions in near-Earth space. Credit: NASA's Goddard Space Flight Center/Mary Pat Hrybyk-Keith

The space surrounding our planet is full of restless charged particles and roiling electric and magnetic fields, which create waves around Earth. One type of wave, plasmaspheric hiss, is particularly important for removing charged particles from the Van Allen radiation belts, a seething coil of particles encircling Earth, which can interfere with satellites and telecommunications. A new study published in Journal of Geophysical Research using data from NASA's Van Allen Probes spacecraft has discovered that hiss is more complex than previously understood.

The new study looked at a newly identified population of hiss waves at a lower frequency than usually studied. These low-frequency hiss waves are particularly good at cleaning out high-energy —those that can cause damage to satellites—from the radiation belts. The authors of the study noticed that low-frequency waves are actually a separate and unique population, tending to cluster in different regions around Earth compared to their high-frequency counterparts.

"You want to know the state of the Van Allen radiation belts so you know how long satellites will last, and part of that is understanding the state of the waves," said David Malaspina, lead author and researcher at the Laboratory for Atmospheric and Space Physics in Boulder, Colorado. "We found the low frequency hiss interacts more effectively with higher energy electrons and can knock those electrons out of the belts more efficiently."

In order to protect satellites, NASA wants to better understand this region of near-Earth . The space environment surrounding Earth is filled with plasma—clouds of charged particles—whose movement is determined not only by gravity, but also by electromagnetics. Constantly changing electric and magnetic fields rolling through space interact with the particles, creating waves in the plasma (like hiss), which are integral to sculpting the near-Earth space environment.

To understand the ever-changing near-Earth particle ecosystem and make better space weather predictions, scientists create models of the plasma waves. Incorporating this new information will make for better simulations. Homayon Aryan, researcher at NASA's Goddard Space Flight Center in Greenbelt, Maryland, said, "Most current wave models do not include this low frequency population of hiss waves. This is definitely an improvement and will allow us to understand the region better and compare theoretical predictions with observations more effectively."

Hiss is aptly named: its typical frequencies are right in the middle of the audible range, and it sounds like static noise when picked up by radio receivers. No one knows with certainty how low-frequency hiss waves originate, but current theories suggest that they form when charged particles are injected into the region of cold near-Earth plasma known as the plasmasphere. NASA's Van Allen Probes spacecraft study hiss and other as part of their work to understand the complex interactions of particles and electromagnetic fields in near-Earth space.

Explore further: NASA listens in as electrons whistle while they work

More information: David M. Malaspina et al, Electric field structures and waves at plasma boundaries in the inner magnetosphere, Journal of Geophysical Research: Space Physics (2015). DOI: 10.1002/2015JA021137

Related Stories

NASA listens in as electrons whistle while they work

July 17, 2017

Space is not empty, nor is it silent. While technically a vacuum, space nonetheless contains energetic charged particles, governed by magnetic and electric fields, and it behaves unlike anything we experience on Earth. In ...

Scientists identify origin of hiss in upper atmosphere

March 5, 2008

Scientists have solved a 40-year-old puzzle by identifying the origin of the intense radio waves in the Earth's upper atmosphere that control the dynamics of the Van Allen radiation belts — belts consisting of high-energy ...

NASA spacecraft investigate clues in radiation belts

March 27, 2017

High above Earth, two giant rings of energetic particles trapped by the planet's magnetic field create a dynamic and harsh environment that holds many mysteries—and can affect spacecraft traveling around Earth. NASA's Van ...

Recommended for you

Superflares from young red dwarf stars imperil planets

October 18, 2018

The word "HAZMAT" describes substances that pose a risk to the environment, or even to life itself. Imagine the term being applied to entire planets, where violent flares from the host star may make worlds uninhabitable by ...

Blazar's brightness cycle confirmed by NASA's Fermi mission

October 18, 2018

A two-year cycle in the gamma-ray brightness of a blazar, a galaxy powered by a supermassive black hole, has been confirmed by 10 years of observations from NASA's Fermi Gamma-ray Space Telescope. The findings were announced ...

Astronomers catch red dwarf star in a superflare outburst

October 18, 2018

New observations by two Arizona State University astronomers using the Hubble Space Telescope have caught a red dwarf star in a violent outburst, or superflare. The blast of radiation was more powerful than any such outburst ...

Magnetic fields may be the key to black hole activity

October 17, 2018

Collimated jets provide astronomers with some of the most powerful evidence that a supermassive black hole lurks in the heart of most galaxies. Some of these black holes appear to be active, gobbling up material from their ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.