

New magnetic topological semimetal for more efficient electronics

July 25 2017, by Barri Bronston

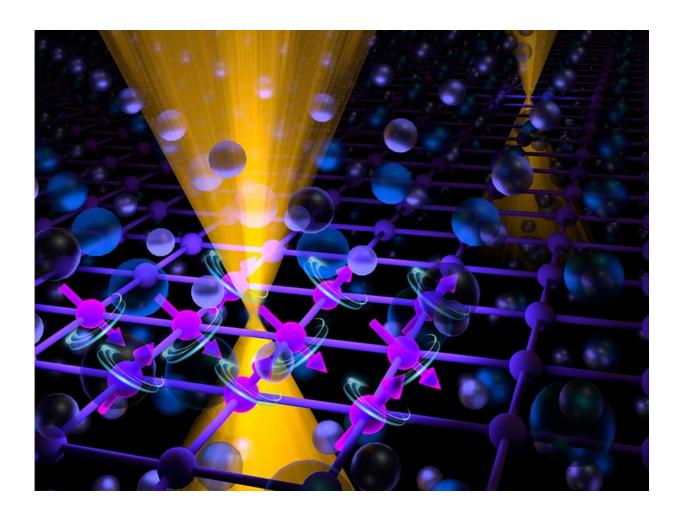


Image of new magnetic semimetal courtesy of Oak Ridge National Lab. Credit: Tulane University

A recent discovery by a team of researchers led by Tulane University advances fundamental knowledge that could one day lead to more energyefficient computers, televisions, cellphones and other electronics.

The researchers' discovery of a new magnetic topological semimetal is featured in the latest edition of the prestigious journal *Nature Materials*.

The Tulane team was led by physics professor Zhiqiang Mao, the Tulane School of Science and Engineering's Outstanding Researcher for 2017. Mao's research, which focuses on quantum materials such as superconductors, magnetic materials and topological materials, was carried out in response to the need for better ways to power electronics, especially given continually shrinking transistors in smartphones and other devices. Topological semimetals represent a new quantum state of matter.

"The recent discoveries of topological materials—a new class of quantum materials—hold great promise for use in energy-saving electronics," Mao said.

The phrase "topological materials" refers to those <u>materials</u> where the current carrying electrons acts as if they have no mass, similar to the properties of photons, the particles that make up light.

"The result is expected to improve fundamental understanding of fascinating properties of topological semimetals," Mao said.

In addition to Mao, scientists from Tulane include research assistant professor Jin Hu, assistant professor Jiang Wei, graduate students Jinyu Liu, Yanglin Zhu and visiting scholar Goufeng Cheng. Other collaborators on the study include Louisiana State University, Oak Ridge National Lab, National High Magnetic Field Lab at Tallahassee and Los Alamos, Florida State University, and University of New Orleans.

More information: J. Y. Liu et al. A magnetic topological semimetal $Sr_{1-y}Mn1-zSb2$ (y, z Nature Materials (2017). <u>DOI: 10.1038/nmat4953</u>

Provided by Tulane University

Citation: New magnetic topological semimetal for more efficient electronics (2017, July 25) retrieved 9 April 2024 from

https://phys.org/news/2017-07-magnetic-topological-semimetal-efficient-electronics.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.