HIV hijacks surface molecule to invade cell

July 12, 2017
A sequence showing how HIV uses surface phosphatidylserine to inject its hereditary material into the cell. Credit: National Institutes of Health.

Researchers at the National Institutes of Health have discovered a key step in the process that HIV uses to inject its genetic material into cells. Working with cultures of cells and tissues, the researchers prevented the invasion process by chemically blocking this step, preventing HIV genetic material from entering cells. The findings could lead to the eventual development of new drugs to prevent HIV infection.

The study, appearing in Cell Host & Microbe, was led by Leonid V. Chernomordik, Ph.D., at NIH's Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD).

To infect a cell, a protein on the surface of HIV binds to molecules on the cell's surface. This binding process initiates a sequence of events that ends with HIV's fusing with the cell's membrane. The virus' then passes into the cell. The researchers discovered that the binding process activates a protein, called TMEM 16F, that transfers another molecule inside the cell membrane, phosphatidylserine, to the membrane's outer surface. They believe molecules in the viral membrane bind with the exposed phosphatidylserine on the cell surface to enhance the virus' fusion to the cell.

The researchers found that blocking the transfer of phosphatidylserine to the cell surface—or attaching another molecule to phosphatidylserine so it can't bind with HIV—prevents the virus from infecting the cell. Theoretically, developing drugs that could block each of these steps could provide the basis for treatments to prevent HIV from infecting , but much more research is needed.

Explore further: Cell particles may help spread HIV infection, study suggests

More information: Zaitseva E. et al. Fusion stage of HIV-1 entry depends on virus induced cell surface exposure of phosphatidyl serine. Cell Host & Microbe. 10.1016/j.chom.2017.06.012

Related Stories

Scientists discover how dengue virus infects cells

October 12, 2010

(PhysOrg.com) -- National Institutes of Health researchers have discovered a key step in how the dengue virus infects a cell. The discovery one day may lead to new drugs to prevent or treat the infection.

Rescue protein gives doomed cells a stay of 'execution'

April 7, 2017

A research team led by St. Jude Children's Research Hospital immunologists has discovered how a set of proteins delays the "executioner" machinery that kills damaged or infected cells in a process called necroptosis. The ...

Recommended for you

New discovery: Common jellyfish is actually two species

November 21, 2017

University of Delaware professor Patrick Gaffney and alumnus Keith Bayha, a research associate with the Smithsonian's National Museum of Natural History, have determined that a common sea nettle jellyfish is actually two ...

Male dolphins offer gifts to attract females

November 21, 2017

Researchers from The University of Western Australia have captured a rare sexual display: evidence of male humpback dolphins presenting females with large marine sponges in an apparent effort to mate.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.