PHYS {@A0RG

New system greatly speeds common parallel-
computing algorithms

July 3 2017, by Larry Hardesty

Root domain

C

B’s subdomain \

dl

FIK G L

H

)

~N
M N
15 4
0P

] K M’s
J ksuhdumuini
\ F's subdomain / @’s subdnmuinj/
" ¥

A new system dubbed Fractal achieves 88-fold speedups through a parallelism
strategy known as speculative execution. Credit: MIT News

The chips in most modern desktop computers have four "cores," or
processing units, which can run different computational tasks in parallel.

1/5




PHYS 19X

But the chips of the future could have dozens or even hundreds of cores,
and taking advantage of all that parallelism is a stiff challenge.

Researchers from MIT's Computer Science and Artificial Intelligence
Laboratory have developed a new system that not only makes parallel
programs run much more efficiently but also makes them easier to code.

In tests on a set of benchmark algorithms that are standard in the field,
the researchers' new system frequently enabled more than 10-fold
speedups over existing systems that adopt the same parallelism strategy,
with a maximum of 88-fold.

For instance, algorithms for solving an important problem called max
flow have proven very difficult to parallelize. After decades of research,
the best parallel implementation of one common max-flow algorithm
achieves only an eightfold speedup when it's run on 256 parallel
processors. With the researchers' new system, the improvement is
322-fold—and the program required only one-third as much code.

The new system, dubbed Fractal, achieves those speedups through a
parallelism strategy known as speculative execution.

"In a conventional parallel program, you need to divide your work into
tasks," says Daniel Sanchez, an assistant professor of electrical
engineering and computer science at MIT and senior author on the new
paper. "But because these tasks are operating on shared data, you need to
introduce some synchronization to ensure that the data dependencies that
these tasks have are respected. From the mid-90s to the late 2000s, there
were multiple waves of research in what we call speculative
architectures. What these systems do is execute these different chunks in
parallel, and if they detect a conflict, they abort and roll back one of
them."

2/5



PHYS 19X

Constantly aborting computations before they complete would not be a
very efficient parallelization strategy. But for many applications, aborted
computations are rare enough that they end up squandering less time
than the complicated checks and updates required to synchronize tasks in
more conventional parallel schemes. Last year, Sanchez's group reported
a system, called Swarm, that extended speculative parallelism to an
important class of computational problems that involve searching data
structures known as graphs.

Irreducible atoms

Research on speculative architectures, however, has often run aground
on the problem of "atomicity." Like all parallel architectures, speculative
architectures require the programmer to divide programs into tasks that
can run simultaneously. But with speculative architectures, each such
task 1s "atomic," meaning that it should seem to execute as a single
whole. Typically, each atomic task is assigned to a separate processing
unit, where it effectively runs in isolation.

Atomic tasks are often fairly substantial. The task of booking an airline
flight online, for instance, consists of many separate operations, but they
have to be treated as an atomic unit. It wouldn't do, for instance, for the
program to offer a plane seat to one customer and then offer it to
another because the first customer hasn't finished paying yet.

With speculative execution, large atomic tasks introduce two
inefficiencies. The first is that, if the task has to abort, it might do so
only after chewing up a lot of computational cycles. Aborting smaller
tasks wastes less time.

The other is that a large atomic task may have internal subroutines that
could be parallelized efficiently. But because the task is isolated on its
own processing unit, those subroutines have to be executed serially,

3/5



PHYS 19X

squandering opportunities for performance improvements.

Fractal—which Sanchez developed together with MIT graduate students
Suvinay Subramanian, Mark Jeffrey, Maleen Abeydeera, Hyun Ryong
Lee, and Victor A. Ying, and with Joel Emer, a professor of the practice
and senior distinguished research scientist at the chip manufacturer
NVidia—solves both of these problems. The researchers, who are all
with MIT's Department of Electrical Engineering and Computer
Science, describe the system in a paper they presented this week at the
International Symposium on Computer Architecture.

With Fractal, a programmer adds a line of code to each subroutine
within an atomic task that can be executed in parallel. This will typically
increase the length of the serial version of a program by a few percent,
whereas an implementation that explicitly synchronizes parallel tasks
will often increase it by 300 or 400 percent. Circuits hardwired into the
Fractal chip then handle the parallelization.

Time chains

The key to the system is a slight modification of a circuit already found
in Swarm, the researchers' earlier speculative-execution system. Swarm
was designed to enforce some notion of sequential order in parallel
programs. Every task executed in Swarm receives a time stamp, and if
two tasks attempt to access the same memory location, the one with the
later time stamp is aborted and re-executed.

Fractal, too assigns each atomic task its own time stamp. But if an
atomic task has a parallelizable subroutine, the subroutine's time stamp
includes that of the task that spawned it. And if the subroutine, in turn,
has a parallelizable subroutine, the second subroutine's time stamp
includes that of the first, and so on. In this way, the ordering of the
subroutines preserves the ordering of the atomic tasks.

4/5


https://phys.org/tags/parallel+programs/
https://phys.org/tags/parallel+programs/
https://phys.org/tags/task/

PHYS 19X

As tasks spawn subroutines that spawn subroutines and so on, the
concatenated time stamps can become too long for the specialized
circuits that store them. In those cases, however, Fractal simply moves
the front of the time-stamp train into storage. This means that Fractal is
always working only on the lowest-level, finest-grained tasks it has yet
identified, avoiding the problem of aborting large, high-level atomic
tasks.

More information: Fractal: An Execution Model for Fine-Grain
Nested Speculative Parallelism. ISCA '17, June 24-28, 2017, DOI:
10.1145/3079856.3080218

This story is republished courtesy of MIT News
(web.mit.edu/newsoffice/), a popular site that covers news about MIT
research, innovation and teaching.

Provided by Massachusetts Institute of Technology

Citation: New system greatly speeds common parallel-computing algorithms (2017, July 3)
retrieved 2 May 2024 from

https://phys.org/news/2017-07-greatly-common-parallel-computing-algorithms.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

5/5


https://phys.org/tags/time/
http://dx.doi.org/10.1145/3079856.3080218
http://dx.doi.org/10.1145/3079856.3080218
http://web.mit.edu/newsoffice/
https://phys.org/news/2017-07-greatly-common-parallel-computing-algorithms.html
http://www.tcpdf.org

