Greater understanding of plant hormone results in stem cells that grow shoots

July 3, 2017, Dartmouth College
Arabidopsis thaliana. Credit: Wikipedia.

Researchers at Dartmouth College have identified how a well-known plant hormone targets genes to regulate plant growth and development. The finding could allow scientists to establish organ-growing stem cells for grains like rice and corn, and may ultimately lead to solutions to stubborn agricultural problems.

The study, appearing in the Proceedings of the National Academy of Sciences, describes how cytokinin activates the transcription factor ARR10 to control gene expression in the Arabidopsis plant - a member of the mustard family commonly used as a model in .

Cytokinin is a hormone that regulates numerous processes in , including cell division, growth of shoots and roots, grain yield and greening.

"The question has always been how cytokinin regulates so many different processes within a plant," said Eric Schaller, a professor of biological sciences at Dartmouth College. "Now we know the genes that are the primary targets of cytokinin, and we can provide the toolbox for manipulating the plant hormone response."

According to the paper, results from the analysis "shed light on the physiological role of the type-B ARRs in regulating the cytokinin response, the mechanism of type-B ARR activation, and the basis by which cytokinin regulates diverse aspects of growth and development as well as responses to biotic and abiotic factors."

As part of the study, conducted in collaboration with the University of North Carolina Charlotte and the University of North Carolina at Chapel Hill, researchers were able to use the new understanding of how cytokinin works to grow shoots in tissue culture under conditions in which these plant organs normally do not form.

To make the plant tissues grow shoots in vitro, the research team increased the cytokinin sensitivity in the Arabidopsis plant. This resulted in activation of the WUSCHEL target gene, which is a key regulator of shoot development. The result confirms understanding of how to establish stem cells that lead to different types of organ growth.

"What we have done is activate the plant to make a stem cell center for a shoot to form," said Schaller. "By finding the direct targets of what is impacted by cytokinin, we can fine-tune our focus in the future."

According to Schaller, this research sets the stage for further work that could help improve yield of important agricultural products like rice and corn.

Explore further: KISS ME DEADLY proteins may help improve crop yields

More information: Yan O. Zubo el al., "Cytokinin induces genome-wide binding of the type-B response regulator ARR10 to regulate growth and development in Arabidopsis," PNAS (2017). www.pnas.org/cgi/doi/10.1073/pnas.1620749114

Related Stories

KISS ME DEADLY proteins may help improve crop yields

May 27, 2013

Dartmouth College researchers have identified a new regulator for plant hormone signaling—the KISS ME DEADLY family of proteins (KMDs) – that may help to improve production of fruits, vegetables and grains.

The origin of stem cells

February 8, 2017

Freiburg plant biologist Prof. Dr. Thomas Laux and his research group have published an article in the journal Developmental Cell presenting initial findings on how shoot stem cells in plants form during embryogenesis, the ...

Plant growth hormones: Antagonists cooperate

June 24, 2010

The two most important growth hormones of plants, so far considered antagonists, also work synergistically. The activities of auxin and cytokinin, key molecules for plant growth and the formation of organs, such as leaves ...

Microbes protect plants with plant hormones

March 17, 2016

Researchers from the Department of Plant and Environmental Sciences at University of Copenhagen have for the first time demonstrated that the production of a plant hormone by a beneficial microbe is protecting a plant from ...

Recommended for you

How quinoa plants shed excess salt and thrive in saline soils

September 21, 2018

Barely heard of a couple of years ago, quinoa today is common on European supermarket shelves. The hardy plant thrives even in saline soils. Researchers from the University of Würzburg have now determined how the plant gets ...

Decoding the structure of an RNA-based CRISPR system

September 20, 2018

Over the past several years, CRISPR-Cas9 has moved beyond the lab bench and into the public zeitgeist. This gene-editing tool CRISPR-Cas9 holds promise for correcting defects inside individual cells and potentially healing ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.