New study sheds light on disease-busting 'recycling bins' in our cells

July 13, 2017, The Francis Crick Institute
Fluorescent markers highlight the autophagy machinery inside a cell. Dark shaded area = cell nucleus; green dot cluster = centrosome; green dots = centriolar satellites; red dots = GABARAP in autophagosomes; yellow dots = PCM1 and GABARAP together. Credit: Sharon Tooze

Scientists have made an important step in understanding how cells keep themselves clean and healthy - a finding that may have implications for combating neurodegenerative diseases and cancer.

One way that our bodies clean out toxic debris and damaged is by a process called , which means 'self-eating'. Our create internal 'recycling bins' called autophagosomes that collect diseased, dead, or worn-out cell parts, strips them for useful bits, and uses the resulting molecules for energy to make new healthy cell parts. When this disposal system stops working properly, it can lead to cancer and diseases like Alzheimer's and Parkinson's.

Researchers at the Francis Crick Institute have uncovered a pathway that controls autophagy, which could potentially be targeted in future to prevent diseases. The research is published in Current Biology.

The team had previously shown that in starved cells that need to recycle nutrients for energy, an important protein required for autophagy, GABARAP, moves from the centrosome - part of the cell that contains structural scaffolds that maintain its shape and enable and movement - to the autophagosome.

In this study, they used visual markers and biochemical tools to see how the autophagy protein gets to where it needs to be. They found that a protein called PCM1 forms a compartment or 'centriolar satellite' which shuttles the autophagy protein from the centrosome to the autophagosome along a scaffold, a bit like a train carriage transporting a person along a railway track. When they deleted the PCM1 gene, the GABARAP autophagy 's journey to the autophagosome became disorganised. Some GABARAP was degraded by an alternative recycling bin in the cell - the proteasome - and some GABARAP went to different autophagosomes from normal, highlighting the importance of PCM1 in controlling the assembly of the autophagy cell machinery.

"The identification of this new type of autophagosome formed by the disorganised GABARAP tells us that there are unique types of autophagosomes in the cell but we don't yet understand how they would work to prevent disease," says Sharon Tooze, Group Leader at the Francis Crick Institute. "One of the aims of our ongoing research is to manipulate this pathway, to boost cells' ability to keep themselves clean and healthy."

Justin Joachim, post-doctoral fellow at the Francis Crick Institute and first named author of the paper adds: "Our work reveals a previously unknown connection between the centrosome, cell division, shuttle proteins and autophagy and establishes a new regulatory pathway to control autophagy,"

The paper 'Centriolar satellites control GABARAP ubiquitination and GABARAP-mediated autophagy' is published in Current Biology.

Explore further: Communication between neighboring cells triggers autophagy

Related Stories

Communication between neighboring cells triggers autophagy

June 29, 2017

An immune-related protein deployed between neighboring cells in Drosophila plays an essential role in the cell degradation process known as autophagy, according to new research by Eric H. Baehrecke, PhD, at UMass Medical ...

Autophagy under the microscope as never before

August 11, 2016

We don't tend to wrap our recycling waste in bubble wrap but that's essentially what cells do during the cellular recycling process called autophagy. Using the live imaging capabilities at the Babraham Institute, Institute ...

When a lack of sugar drives cells to eat themselves

June 1, 2017

Autophagy is the recycling process by which our cells keep themselves young. They continually break down and renew small parts of themselves in a kind of self-digestion; this helps to counteract harmful deposits which may ...

Protein induces self-destruction in cancer cells

January 21, 2015

The role of a phosphatase protein in promoting the self-destruction of healthy cells and the progression of ovarian cancer has been identified by A*STAR researchers. Known to be overexpressed in cancer cells, the protein, ...

Recommended for you

Study could spawn better ways to combat crop-killing fungus

April 26, 2018

About 21 million years ago, a fungus that causes a devastating disease in rice first became harmful to the food that nourishes roughly half the world's population, according to an international study led by Rutgers University-New ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.