Cross-talk between stagnation points in flow and orientation

Cross-talk between stagnation points in flow and orientation
Currents in a liquid crystal, both experimentally (center row) and theoretically (right row). The red arrows indicate the inflowing currents; the green arrows the outflowing currents. The yellow markings in the right row indicate the stagnation points: the ‘defects’. With currents coming from more than two directions, multiple defects are formed. Credit: Leiden University

What happens when you press two books horizontally against each other? The built-up pressure eventually will be released in an upward motion of the top pages and a downward motion of the bottom pages, like mountains that form from the earth's crust, but in two directions. However the question remains which way the center page goes. In theory, this is undecided, and soft matter physicists call this a stagnation point or defect. Also fluids have stagnation points, for example a whirl in a bathtub. In the exact center, the fluid is at rest, but further away it winds around the core.

Liquid crystals

Fluids endowed with internal orientational order, such as liquid crystals, might possess defects not only in the flow velocity, but also in the average orientation of their . These orientational defects, known as disclinations, are among the most characteristic and intensively researched features of liquid crystals. Leiden physicist Luca Giomi is one of those researchers. 'Display makers hate those defects and spend fortunes on expensive glass-rubbing machines to get rid of them. Soft matter physicists, on the other hand, love these tiny singularities and try to device ways to exploit them.'


In a paper recently published in PNAS, Giomi and collaborators describe their discovery of an intriguing "cross-talk" between defects in different material fields: the velocity and the average molecular orientation. Giomi: 'Defects having the same rotational symmetry attract each other even if they belong to different fields. So a stagnation point in a two-fold symmetric flow (center-top panel, edit.) acts as a tweezer for a two-fold disclination (right-top panel, edit.).' Stagnation points in flows with higher symmetry (i.e. three-fold, four-fold etc.) attract more complicated disclinations where the orientation winds around the core more than once (lower panels).

Explore further

New theory on liquid crystals with high symmetry

More information: Luca Giomi et al. Cross-talk between topological defects in different fields revealed by nematic microfluidics, Proceedings of the National Academy of Sciences (2017). DOI: 10.1073/pnas.1702777114
Provided by Leiden University
Citation: Cross-talk between stagnation points in flow and orientation (2017, July 10) retrieved 21 April 2021 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Feedback to editors

User comments