Breakthrough achieved in improving the ionic conductivity of fuel cell materials

July 3, 2017, Aalto University

Ceramic fuel cell technology has a tremendous potential for clean energy production.

The researchers at Aalto University developed synthesis and processing routes for development of ceramic nanocomposite materials, which resulted in a breakthrough in improving the ionic conductivity of the fuel cell electrolyte materials.

A record high ionic conductivity of 0.55 S/cm at 550oC has been achieved at Aalto University. Fuel cells fabricated using these nanocomposite materials produced an outstanding performance of 1.06 W/cm2.

Ceramic has a tremendous potential for sustainable clean energy production. With the help of these superionic , the operating temperature of the fuel cells can be significantly reduced. This low temperature operation helps in improving the long-term stability of the devices.

'With the help of these superionic materials, the losses due to ionic transport in the electrolyte layer are dramatically reduced, which makes it possible to produce fuel cells performing over 1W/cm2. We envision to reach a performance of 2.5 W/cm2 by depositing these potential materials with modern printing method', Docent, Dr. Muhammad Imran Asghar says.

This work is a part of an EU-Indigo project funded by the Academy of Finland. The partners in the project include Aalto University, University of Oslo, University of Aveiro, Indian Institute of Technology – Delhi, CGRI – CSIR Kolkata and VESTEL Turkey.

The synthesized superionic were characterized with various microscopic (SEM, TEM), spectroscopic techniques (XRD, Raman, FTIR) and other analyses (BET analysis, DSC, TGA) techniques. The high performance were characterized using electrochemical impedance spectroscopy and voltage/current-density measurements.

Details regarding the results can be found in the articles published in International Journal of Hydrogen Energy and Frontiers of Chemical Science and Engineering

Explore further: Success in developing groundbreaking electrolyte materials

More information: Muhammad I. Asghar et al. Comparative analysis of ceramic-carbonate nanocomposite fuel cells using composite GDC/NLC electrolyte with different perovskite structured cathode materials, Frontiers of Chemical Science and Engineering (2017). DOI: 10.1007/s11705-017-1642-2

Ieeba Khan et al. High conductive (LiNaK) 2 CO 3 Ce 0.85 Sm 0.15 O 2 electrolyte compositions for IT-SOFC applications, International Journal of Hydrogen Energy (2017). DOI: 10.1016/j.ijhydene.2017.05.152

Related Stories

Success in developing groundbreaking electrolyte materials

November 24, 2010

The Fuel Cell Nano-Materials Group at the Japanese National Institute for Materials Science has successfully developed two types of novel materials which satisfy all the three requirements for electrolyte: ion conductivity, ...

Recommended for you

Detecting metabolites at close range

June 22, 2018

A novel concept for a biosensor of the metabolite lactate combines an electron transporting polymer with lactate oxidase, which is the enzyme that specifically catalyzes the oxidation of lactate. Lactate is associated with ...

CryoEM study captures opioid signaling in the act

June 22, 2018

Opioid drugs like morphine and fentanyl are a mainstay of modern pain medicine. But they also cause constipation, are highly addictive, and can lead to fatal respiratory failure if taken at too high a dose. Scientists have ...

Researchers achieve unprecedented control of polymer grids

June 21, 2018

Synthetic polymers are ubiquitous—nylon, polyester, Teflon and epoxy, to name just a few—and these polymers are all long, linear structures that tangle into imprecise structures. Chemists have long dreamed of making polymers ...

Template to create superatoms could make for better batteries

June 21, 2018

Virginia Commonwealth University researchers have discovered a novel strategy for creating superatoms—combinations of atoms that can mimic the properties of more than one group of elements of the periodic table. These superatoms ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.