First aid kit in some living organisms helps fix DNA after lengthy sun exposure

July 12, 2017, Springer

Sunburn in living organisms is caused by ultraviolet (UV) light from the sun damaging the DNA in the cells. Many organisms, however, have an in-built mechanism for repairing the sun damage. This is possible thanks to an enzyme called DNA photolyase, which is so specialised that cryptochrome, a structurally similar molecule, is unable to do the same job. By comparing both types of molecule, physicists can understand precisely how the ability of our enzymes to repair DNA boils down to the most minute structural details. In a study published in The European Physical Journal D, Katrine Aalbæk Jepsen from the University of Southern Denmark, in Odense, and her colleague Ilia Solov'yov pinpoint the mechanism by which repair enzymes bind to the damaged site.

In this study, the authors conducted simulations to examine the molecular- level dynamics of two similar molecules when binding to DNA. The first is an enzyme specialised in DNA repair, called (6-4) DNA photolyase, and the other is , which is very close to photolyase structurally but has a completely different biological function and is unable to recognise damage to DNA.

The authors found that the binding energy between (6-4) DNA photolyase and DNA is much lower than that between cryptochrome and DNA. This is due to electrostatic interactions between the positive charges on the protein surface of photolyase and the negatively charged backbone of the DNA. The team realised the importance of several charged in the enzyme, called K246 and R421, which are absent in cryptochrome. They found that R42 is specifically designed to keep the DNA strands at the damaged site inside the repair pocket of the enzyme separate.

Explore further: Researchers Find New Way To Study How Enzymes Repair DNA Damage

More information: Katrine Aalbæk Jepsen et al, On binding specificity of (6–4) photolyase to a T(6–4)T DNA photoproduct, The European Physical Journal D (2017). DOI: 10.1140/epjd/e2017-70818-2

Related Stories

A molecular plaster to repair DNA

June 13, 2017

All cells are confronted with DNA damage, for example by exposure of the skin to UV rays, chemical byproducts of nerve cells consuming sugar, or immune cells destroying bacteria. If these DNA lesions are not - or badly - ...

Recommended for you

Scientists discover new 'architecture' in corn

January 21, 2019

New research on the U.S.'s most economically important agricultural plant—corn—has revealed a different internal structure of the plant than previously thought, which can help optimize how corn is converted into ethanol.

Targeting 'hidden pocket' for treatment of stroke and seizure

January 19, 2019

The ideal drug is one that only affects the exact cells and neurons it is designed to treat, without unwanted side effects. This concept is especially important when treating the delicate and complex human brain. Now, scientists ...

Artificially produced cells communicate with each other

January 18, 2019

Friedrich Simmel and Aurore Dupin, researchers at the Technical University of Munich (TUM), have for the first time created artificial cell assemblies that can communicate with each other. The cells, separated by fatty membranes, ...

Using bacteria to create a water filter that kills bacteria

January 18, 2019

More than one in 10 people in the world lack basic drinking water access, and by 2025, half of the world's population will be living in water-stressed areas, which is why access to clean water is one of the National Academy ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.