

Roofline model boosts manycore code
optimization efforts

June 1 2017, by Kathy Kincade

In the Roofline Model, the starting point for assessing performance is the peak
computation rate, which is represented by a horizontal line showing the highest
possible performance and resembles the top roofline of a building. The sloped
part of the roof is determined by peak bandwidth between the memory where the
data is stored and the processor where it is used to perform operations. The third
pieces of the roofline structure are the upright, vertical “posts” indicating the
arithmetic intensity—the ratio of the number of flops performed to the total
number of bytes of data moved. The higher this ratio, the better the overall
performance of the application. Credit: Lawrence Berkeley National Laboratory

A software toolkit developed at the Department of Energy's Lawrence

1/7

Berkeley National Laboratory (Berkeley Lab) to better understand
supercomputer performance is now being used to boost application
performance for researchers running codes at the National Energy
Research Scientific Computing Center (NERSC) and other
supercomputing facilities.

This work, spearheaded by computer scientists in Berkeley Lab's
Computational Research Division (CRD), is helping to address the
growing gap between processor performance and memory
performance—the "memory wall"—that can limit how well many
scientific applications perform. Even with the fastest processors, if data
gets bogged down moving in and out of memory, the processors end up
waiting for data to process, which slows overall performance.

With the popularity of manycore processors—such as the Intel Knights
Landing processors in Cori, NERSC's new 30-petaflop system—and the
diversity of computing architectures, supercomputers are increasingly
complex, making it difficult for users to achieve sustained application
performance across different architectures. But understanding memory
bandwidth limits can help explain the gap between theoretical and
observed performance. Thus performance models and tools that aid
users' understanding of bandwidth limits for a particular application are
crucial.

Visualizing Performance Potential

Toward this end, in 2005 Sam Williams—then a Ph.D. student at the
University of California, Berkeley and now a staff scientist in CRD's
Performance Algorithms Research Group —began sketching out a
model that could estimate performance on a variety of kernels common
to high performance computing.

"As the HPC community transitioned from single-core to multicore

2/7

https://phys.org/tags/applications/
https://phys.org/tags/high+performance+computing/

architectures, it became clear we needed some means of visualizing the
performance potential of various HPC kernels on the zoo of emerging
manycore architectures," Williams said, "At the time there was a great
deal of buzz around IBM's forthcoming Cell processor and interest in
quantifying its performance on HPC codes. Unfortunately, as neither
hardware nor simulators were yet available, we could not directly run
benchmarks on the platform."

Williams' initial model, which used bound and bottleneck analysis, was
applied to the Cell processor, and in 2006 the performance results were
published in a UC Berkeley Tech Report and in a well-received
Computing Frontiers paper. He then began working to visualize the
performance bottlenecks. After several iterations, the resulting
model—dubbed "Roofline" by David Patterson, William's thesis advisor
at UC Berkeley—was published in Communications of the ACM in 2009.

A Team Effort

The Roofline Model is designed to enable users to assess the quality of
attained performance of an application by combining data locality (how
much data needs to move in and out of the processor), bandwidth (the
speed at which that data can be moved) and different parallelization
paradigms into a single performance figure, yielding a two-dimensional
graph that clearly plots the bandwidth bottlenecks that must be
eliminated to speed up the application.

"The idea of Roofline is two-fold," said Lenny Oliker, a computer senior
scientist in CRD's Performance Algorithms Research Group who has
worked closely with Williams to refine and expand Roofline's
capabilities. "First, we need to understand the underlying hardware
architecture (of the supercomputer), its capabilities and the performance
of real codes running on it. Then we want to characterize actual
applications and graph them onto the Roofline chart."

3/7

XGC1 is a multiscale turbulence code used to study and simulate tokamak fusion
plasma. Credit: Lawrence Berkeley National Laboratory

In practice, the Roofline model is a graph with an x and a y axis where
the x axis is the arithmetic intensity—a measure of flops per byte,
explained Jack Deslippe, acting group lead for NERSC's Application
Performance Group who is working with Williams and other Berkeley
Lab colleagues to extend the model and its applications. "In computer
code what this means is how many floating point operations (FLOPs) do
you do for every byte of data that you have to bring in from memory,"
Deslippe said. "What the Roofline curve tells you is what performance
you can expect from the system given the characteristics of your
application or a subroutine of the application."

Since its initial development, what is now known as the Empirical
Roofline Toolkit (ERT) has benefitted from contributions by several
Berkeley Lab staff. In 2013, CRD's Terry Ligocki developed a
benchmark that could automatically characterize CPU and GPU

4/7

architectures; this became the ERT. And in 2015 NERSC's Matt
Cordery created the toolkit's initial instrumentation technology. Along
the way, HPC users who write scientific applications for manycore
systems have been able to apply the toolkit to their applications and see
how changing parameters of their code can improve performance.

Extending Functionality

While the Roofline model has been used for a number of years to
characterize supercomputing systems and architectures, over the past
year it has been expanded to both visualize and guide application
optimization, and new tools have been developed to support this,
according to Deslippe. As part of this effort, NERSC's Doug Doerfler
has extended and applied the technology to the Knights Landing
processors in the Cori KNL system.

"We are using this model to frame the conversation with users about
where their application stands," Deslippe said. "It's a good way to
communicate with users about what they need to work on with a given
application or subroutine. It takes a little of the mystery out of code
optimization."

In addition, through a collaboration with Intel, the Roofline team has
been working to incorporate Roofline into Intel's Vector Advisor, a
vectorization optimization and shared memory threading assistance tool.
The resulting Intel Advisor Roofline Tool allows users to collect
Roofline performance data, including accurate FLOPs counts that
correctly consider different vector registers and masks using Intel's PIN
tool, as well as accurate data traffic from various levels of the cache
memory hierarchy. By determining the total number of FLOPs that will
be performed and the amount of data that will be moved, plus the
amount of time it will take to complete the job, users can plot the
performance of their code on the Roofline graph. They can then use this

5/7

plot to see how adjustments to how the code is set up can increase the
performance.

"In the past we were using Roofline to characterize the HPC systems
themselves," said Deslippe. "In the last year, we have gone to using
Roofline not just for this but as a way to guide the optimization process
for applications. There are all these new, novel parts of the Intel Knights
Landing (KNL) hardware—very fast memory right on the chip, bigger
vector units, manycores…—and they all sound impressive to the user,
but how do they know which one is important for their application? This
is where Roofline comes in."

Roofline Use Case: XGC1

Over the past year, the Roofline team has been introducing NERSC
users, including those involved in the NERSC Exascale Science
Applications Program (NESAP), to the Roofline model to help them
gauge performance improvements. For example, Tuomas Koskela, a
NERSC postdoc who joined the center in 2016 to work on XGC1 (a
fusion particle-in-cell code) as part of a NESAP project, has been using
Roofline to improve the code's performance on Cori.

"We started talking about using Roofline last spring," Koskela said. "It
was interesting to me because I had a problem with my code that we
didn't understand why it wasn't getting very good performance." After
using Roofline via Intel Advisor to optimize the performance of kernels
of the XGC1 code for the KNL architecture, Koskela was able to
dramatically improve the code's performance on Cori.

"This demonstrates an effective optimization strategy that has enabled
this science application to achieve up to 4.6x speed-up and prepare it for
future exascale architectures," Koskela said. "The Roofline model is a
powerful tool for analyzing the performance of applications with respect

6/7

https://phys.org/tags/performance/

to the theoretical peak achievable on a given computer architecture."

 More information: Samuel Williams et al. Roofline, Communications
of the ACM (2009). DOI: 10.1145/1498765.1498785

Provided by Lawrence Berkeley National Laboratory

Citation: Roofline model boosts manycore code optimization efforts (2017, June 1) retrieved 25
April 2024 from
https://phys.org/news/2017-06-roofline-boosts-manycore-code-optimization.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

7/7

http://dx.doi.org/10.1145/1498765.1498785
https://phys.org/news/2017-06-roofline-boosts-manycore-code-optimization.html
http://www.tcpdf.org

