Gene transfer keeps bacteria fit

June 15, 2017
The bacteria Bartonella henselae. Credit: University of Basel, Biozentrum

Researchers at the University of Basel's Biozentrum have discovered that Bartonella bacteria exchange genes efficiently using a domesticated virus encoded in their genome. As the findings published in Cell Systems demonstrate, the exchange of genetic material only takes place between bacteria with a high level of fitness. The gene transfer between pathogens prevents the accumulation of genetic defects, promotes the spread of beneficial gene mutations and thus keeps the bacteria fit.

Bartonella are that can cause diverse infectious diseases in man, such as cat-scratch disease. In order to prevent the accumulation of mutations during the infection cycle, pathogens require efficient DNA repair mechanisms. Therefore, the sharing of intact within plays an important role, as errors in the gene pool can be eliminated and the genetic material kept fresh.

In collaboration with the ETH Zurich Prof. Christoph Dehio's team at the Biozentrum, University of Basel, has discovered that for the efficient exchange of genes Bartonella use virus-like particles, so-called gene transfer agents. They also demonstrated that damaged bacteria are excluded from this gene transfer process and so it is much less likely that detrimental genetic material is spread in the .

Gene transfer using domesticated viruses

Gene transfer agents evolved as derivatives of bacteriophages, viruses that attack bacteria. However, other than bacteriophages packing their own genome they package random pieces of the bacterial genome and transfer these to other bacteria. Using these domesticated bacteriophages, bacterial populations can efficiently exchange DNA fragments. This type of gene transfer, however, comes at a high price: The fraction of the bacterial population that produces gene transfer agents dies while releasing the particles. But what are the advantages for the surviving bacterial population that takes up the gene fragments?

As the bacterial populations grow, bacteria divide regularly. For each cell division, the genome is duplicated and passed on to the two daughter cells. Errors creep in regularly during this recurrent process. Only efficient repair mechanisms, including the exchange of flawless genetic material, can prevent the accumulation of genetic aberrations. In short: The genetic material is kept fresh.

"A further evolutionary advantage of gene transfer agents is the spread of new genetic material throughout the bacterial population, endowing it with new properties. This may also include antibiotic resistance," explains Dehio. But this survival advantage for bacteria means, on the other hand, a threat to humans.

Only the fittest bacteria transfer genes

It has long remained unknown how the exchange of genetic material between bacteria using gene transfer agents works and how it is regulated. In their study, Dehio's team has comprehensively identified the involved components. In particular, stress signals are key players in this process. Only bacteria in good condition exchange genetic material, whereas bacteria stressed as a result of unfavorable gene mutations do not transfer genes.

"In other words only the fittest and genetically most promising bacteria in a population divide and exchange genetic material. In genetically weakened and therefore stressed bacteria this mechanism is switched off," says Maxime Québatte, the first author of the study.

The sharing of intact endows the fittest part of a bacterial population to persist in the host and to be passed onto new hosts successfully. This knowledge may, in turn, be used to develop new strategies to combat infections caused by the pathogen Bartonella.

Explore further: New algorithm identifies gene transfers between different bacterial species

More information: Maxime Québatte et al. Gene Transfer Agent Promotes Evolvability within the Fittest Subpopulation of a Bacterial Pathogen, Cell Systems (2017). DOI: 10.1016/j.cels.2017.05.011

Related Stories

How fungi can improve the genetic makeup of bacteria

December 14, 2016

Soil bacteria use the extensively branched, thread-like structures of fungi to move around and access new food sources. In a new study published in the journal Scientific Reports, UFZ researchers have been able to demonstrate ...

Inflammation awakens sleepers

March 28, 2017

The inflammatory response that is supposed to ward off pathogens that cause intestinal disease makes this even worse. This is because special viruses integrate their genome into Salmonella, which further strengthens the pathogen.

Chaining up diarrhoea pathogens

April 18, 2017

Researchers have clarified how vaccinations can combat bacterial intestinal diseases: vaccine-induced antibodies in the intestine chain up pathogens as they grow in the intestine, which prevents disease and surprisingly also ...

Recommended for you

The astonishing efficiency of life

November 17, 2017

All life on earth performs computations – and all computations require energy. From single-celled amoeba to multicellular organisms like humans, one of the most basic biological computations common across life is translation: ...

Unexpected finding solves 40-year old cytoskeleton mystery

November 17, 2017

Scientists have been searching for it for decades: the enzyme that cuts the amino acid tyrosine off an important part of the cell's skeleton. Researchers of the Netherlands Cancer Institute have now identified this mystery ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.