Dual role of fruit fly protein in connecting chromosome copies

June 1, 2017, Nagoya University
Dual Role of Fruit Fly Protein in Connecting Chromosome Copies
Dalmatian is essential to connect duplicated copies of chromosomes. Dalmatian rocks cohesin-ring to connect two copies of DNA and hold these sister chromatids together during mitosis. In the absence of Dalmatian, genomic copies will be completely separated from each other in mother cells and never be distributed equally into daughter cells. Credit: Tomoko Nishiyama

Nagoya University researchers identified combined function for Drosophila protein in launching and maintaining a process enabling chromatids to pair during DNA replication.

A sister chromatid is one half of an identical pair of chromatids formed by the replication of a single chromosome. At certain stages of the , these chromatids pair and are held together in a process known as cohesion, which involves the cohesin protein. This typically occurs during DNA replication, and in vertebrates requires the cohesin-associating protein sororin. Cohesion is then maintained until the point when line up in the middle of the cell. Although cohesin is then removed, cohesion around the region of the chromosome where the two sister chromatids link is protected until slightly later in the cell cycle.

In vertebrates, this protection is provided by the shugoshin protein, but mechanisms of Drosophila cohesion protection were unclear. Now, Japanese researchers at Nagoya University have identified Dalmatian (Dmt) as a fruit fly protein related to sororin that is both required for cohesion and has shugoshin-like cohesion protection roles. The study was reported in the EMBO Journal.

Sister chromatid cohesion is necessary for the equal segregation of chromosomes and subsequent genomic inheritance. Nagoya University researchers labeled the Dmt protein with a green fluorescent tag, then used live cell imaging to show that it localizes to the joining point of tightly packed chromatin in Drosophila . This stable binding was shown to require interactions with cohesin.

Additionally, the research team found that blocking Dmt gene expression prevented cohesion from occurring, showing that Dmt is crucial for the launch of cohesion. Moreover, the behavior of Dmt and its means of establishing cohesion were very similar to that of vertebrate sororin.

A dual role for Dmt was identified in that it also protects cohesion, thus allowing it to persist during cell division.

"Simple organisms such as the budding yeast carry only one shugoshin gene, while more complex vertebrates have two that function separately in different types of cell division," corresponding author Tomoko Nishiyama says. "Our identification of a that acts both to establish and protect cohesion in Drosophila chromosomes may represent an intermediate stage of the evolutionary inheritance of factors involved in maintaining genomic integrity."

Explore further: Coming together: tDNAs, RNA pol III and chromatid cohesion

More information: Takashi Yamada et al. Dalmatian combines sororin and shugoshin roles in establishment and protection of cohesion, The EMBO Journal (2017). DOI: 10.15252/embj.201695607

Related Stories

Chromosome glue repairs damaged DNA

July 13, 2007

When a strand of DNA breaks in the body's cells, it normally does not take long until it has been repaired. Now researchers at the Swedish medical university Karolinska Institutet have discovered a new mechanism that helps ...

Cellular "blindness" to chromosome cohesion defects

March 23, 2016

Research led by Raquel Oliveira, group leader at Instituto Gulbenkian de Ciência (IGC; Portugal), has elucidated how cells are almost blind to chromosome cohesion defects. The results, published in the scientific journal ...

Cohesin jigsaw begins to fit

May 19, 2009

The essential chromosomal protein complex cohesin has crucial roles in sister chromatid cohesion, DNA repair and transcriptional regulation. Despite its conserved function, cohesin's disparate association patterns in different ...

Gluing chromosomes at the right place

October 8, 2014

During cell division, chromosomes acquire a characteristic X-shape with the two DNA molecules (sister chromatids) linked at a central "connection region" that contains highly compacted DNA. It was unknown if rearrangements ...

Recommended for you

A world of parasites

May 25, 2018

Alex Betts, Craig MacLean and Kayla King from the Department of Zoology, shed light on their recent research published in Science, which addressed the impact that parasite communities have on evolutionary change and diversity.

Bumblebees confused by iridescent colors

May 25, 2018

Iridescence is a form of structural colour which uses regular repeating nanostructures to reflect light at slightly different angles, causing a colour-change effect.

A better B1 building block

May 25, 2018

Humans aren't the only earth-bound organisms that need to take their vitamins. Thiamine – commonly known as vitamin B1 – is vital to the survival of most every living thing on earth. But the average bacterium or plant ...

Plant symbioses—fragile partnerships

May 25, 2018

All plants require an adequate supply of inorganic nutrients, such as fixed nitrogen (usually in the form of ammonia or nitrate), for growth. A special group of flowering plants thus depends on close symbiotic relationships ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.