Tracking the protein patrollers

May 12, 2017 by Tracey Peake, North Carolina State University

A nanoprobe developed by biophysicists at NC State could allow researchers to trace the movements of different proteins along DNA – without the drawbacks of current methods.

A host of proteins patrol your DNA helix like cops on a beat. These proteins have individual functions, including identifying damaged areas on the DNA strand and initiating repairs. To study these proteins, researchers commonly attach nanoprobes to them. The probes fluoresce under certain types of light, allowing their movements to be traced.

The problem? According to biophysicist Shuang Lim, "We know that DNA is helical in shape – it's a spiral. When we observe these proteins moving along the strand, we should be able to tell if they're moving around the DNA as well as along it. Unfortunately, the technology we have now doesn't really allow us to do that.

"The most common probes right now are quantum dots and ," Lim continues. "Quantum dots blink, which makes it difficult to determine where they are or what they may be doing at any given time. Imagine trying to watch a movie, but with random dark frames popping up as you watch. You can't get the complete picture. Gold nanorods, on the other hand, tend to wobble. The wobble also affects our ability to get an accurate idea of where these proteins are and how they may be interacting with the DNA strand."

Wide field fluorescence of nanoplasmonic upconverting nanoparticles in 50% sucrose showing 3 particles (1 to 3). On the right is  a corresponding positional time trace of the selected particles where Particles 1 and 2, both single particles, demonstrate mixed translational and rotational motion. Credit: North Carolina State University

Lim, along with graduate student Kory Green and former postdoctoral scholar Janina Wirth, developed a nanoprobe that addresses these issues. Their probe – a nanoplasmonic upconverting nanoparticle – changes fluorescent intensity based upon its orientation.

"These particles are disc shaped. When they're lying flat, they are bright, and when they're on edge, they're dark," Green says. "They don't blink and they don't wobble, so it's much easier to get accurate measurements from them."

"Another advantage is that they are excited by – or show up when – exposed to infrared light," says Lim. "Many of the quantum dot probes use material that is excited by blue, or ultraviolet (UV) light. UV exposure damages the samples that we want to study. But infrared light doesn't."

Lim, Green and Wirth conducted a proof-of-concept study with their probe by observing it on a flat substrate and in a sucrose solution, to see if they could accurately detect how the nanoprobe was moving. The preliminary results were promising, so Lim and the team are moving toward their next steps, which include testing the probe on a DNA-patrolling .

"All of these proteins do different things for our DNA, but we don't know exactly what they're doing," Lim says. "We're hoping to use this to build a library that characterizes all of these proteins, so that we can determine their function."

Explore further: Quantum dots illuminate transport within the cell

More information: Kory K. Green et al. Nanoplasmonic Upconverting Nanoparticles as Orientation Sensors for Single Particle Microscopy, Scientific Reports (2017). DOI: 10.1038/s41598-017-00869-3

Related Stories

Quantum dots illuminate transport within the cell

March 21, 2017

Biophysicists from Utrecht University have developed a strategy for using light-emitting nanocrystals as a marker in living cells. By recording the movements of these quantum dots, they can clarify the structure and dynamics ...

Peptides as tags in fluorescence microscopy

November 30, 2016

Fluorescence microscopy visualizes the molecular elements of cells. Proteins of nerve cells, for instance, can be labelled using probes which are subsequently excited with light to fluoresce. In the end, the fluorescence ...

MIT probe may help untangle cells' signaling pathways

June 27, 2008

MIT researchers have designed a new type of probe that can image thousands of interactions between proteins inside a living cell, giving them a tool to untangle the web of signaling pathways that control most of a cell's ...

Recommended for you

New theory shows how strain makes for better catalysts

April 20, 2018

Brown University researchers have developed a new theory to explain why stretching or compressing metal catalysts can make them perform better. The theory, described in the journal Nature Catalysis, could open new design ...

Spider silk key to new bone-fixing composite

April 19, 2018

UConn researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Machine-learning software predicts behavior of bacteria

April 19, 2018

In a first for machine-learning algorithms, a new piece of software developed at Caltech can predict behavior of bacteria by reading the content of a gene. The breakthrough could have significant implications for our understanding ...

GLUT5 fluorescent probe fingerprints cancer cells

April 19, 2018

Determining the presence of cancer, as well as its type and malignancy, is a stressful process for patients that can take up to two weeks to get a diagnosis. With a new bit of technology—a sugar-transporting biosensor—researchers ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.