Sequestering blue carbon through better management of coastal ecosystems

May 20, 2017 by Traci Hillyard, Utah State University
Utah State University ecologist Trisha Atwood is investigating sequestration of blue carbon in vegetated coastal habitats. Credit: Peter Macreadie, Deakin University

Focusing on the management of carbon stores within vegetated coastal habitats provides an opportunity to mitigate some aspects of global warming. Trisha Atwood from Utah State University's Watershed Sciences Department of the Quinney College of Natural Resources and the Ecology Center has collaborated with several co-authors from Australia, including lead author Peter Macreadie from Deakin University, in an article published in the May 2017 issue of Frontiers in Ecology and the Environment.

"If we are going to fight off climate change not only do we need to cut CO2 emissions," Atwood states. "But we also need to protect and restore natural carbon sinks like coastal wetlands."

Although vegetated occupy only 0.2 percent of the ocean's surface, they play a disproportionately large role in the capture and retention of global carbon. As a result, bio sequestration in vegetated coastal habitats, a process that takes up atmospheric CO2 and stores it for millennia in marine soils (e.g. ), is emerging as one of the most effective methods for long-term carbon storage.

Researchers are learning how to increase the sequestration of the blue carbon. Historically, resource managers have relied on best-management practices to protect and restore vegetated coastal habitats. Researchers now theorize that incorporating catchment-level management strategies in addition to the preservation of shoreline vegetation can help keep to under 2 degreesC. These highly productive vegetated coastal habitats, including seagrasses, tidal marshes and mangroves, provide the best opportunities to capture and retain marine-based carbon.

Utah State University ecologist, Trisha Atwood investigates sequestration of blue carbon of vegetated coastal habitats. Credit: Peter Macreadie, Deakin University

Three key environmental processes influence blue carbon sequestration: nutrient inputs, bioturbation and hydrology. When these processes are altered by human actions, such as eutrophication of coastal ecosystems, it can result in large amounts of CO2 and methane being released back into the atmosphere. Managing these three processes provides the best option to protect the carbon with its' long-term storage capacity.

"Wetlands have a tremendous capacity for storing carbon long-term," Atwood said. "This research highlights three ways in which we can protect and improve this capacity."

She and her co-authors demonstrate that these actions have the potential to profoundly alter rates of accumulation and retention in vegetated coastal habitats around the globe.

Explore further: Jumping the shark: Scientists say predators protect marine ecosystems, blue carbon

More information: Peter I Macreadie et al, Can we manage coastal ecosystems to sequester more blue carbon?, Frontiers in Ecology and the Environment (2017). DOI: 10.1002/fee.1484

Related Stories

Recommended for you

What happened before the Big Bang?

March 26, 2019

A team of scientists has proposed a powerful new test for inflation, the theory that the universe dramatically expanded in size in a fleeting fraction of a second right after the Big Bang. Their goal is to give insight into ...

Cellular microRNA detection with miRacles

March 26, 2019

MicroRNAs (miRNAs) are short noncoding regulatory RNAs that can repress gene expression post-transcriptionally and are therefore increasingly used as biomarkers of disease. Detecting miRNAs can be arduous and expensive as ...

Can China keep it's climate promises?

March 26, 2019

China can easily meet its Paris climate pledge to peak its greenhouse gas emissions by 2030, but sourcing 20 percent of its energy needs from renewables and nuclear power by that date may be considerably harder, researchers ...

In the Tree of Life, youth has its advantages

March 26, 2019

It's a question that has captivated naturalists for centuries: Why have some groups of organisms enjoyed incredibly diversity—like fish, birds, insects—while others have contained only a few species—like humans.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

EmceeSquared
not rated yet May 22, 2017
The oil/gas industry should pay to convert the Gulf of Mexico and other dead zones back into thriving ecosystem carbon sinks. The work should be done by the people who have remained in their families' coastal neighborhoods despite the devastation the oil/gas industry has wreaked on them.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.