Research reveals insights into optical properties of plasmonic nanostructures

May 23, 2017, University of Arkansas

University of Arkansas researchers have helped define the optical properties of plasmonic nanostructures, work that could lead to improved sensors in security and biomedical devices, and have applications in solar cells. The research team in the Department of Physics recently published its findings in the journal PLOS ONE.

Plasmons are waves of electrons on the surface of a metal. The frequency of these electronic waves can be altered to couple with light by changing the particle size, shape, material and surrounding environment. The plasmons can increase and focus the light down to nanoscale volumes, which can be useful for a variety of nanoscience applications.

The core of the work is the subject of graduate student Pijush K. Ghosh's master thesis in physics. Ghosh collaborated with fellow graduate students Desalegn T. Debu and David A. French for the journal article, titled "Calculated thickness dependent plasmonic properties of gold nanobars in the visible to near-infrared light regime." The students are part of a physics research group led by assistant professor Joseph Herzog.

This work explores the of rectangular-shaped gold nanoparticles, in particular how they scatter light and the strength of the near the nanoparticle. The researchers determined how variations in the structures' geometry affected how they coupled with , making it easier to work with structures that aren't perfectly square. The findings could enable plasmonic devices, such as sensors, to be more accurately tuned for a specific application.

"Making nanostructures with perfectly square corners is difficult using common nanofabrication techniques," Ghosh said. "In our work, we investigated realistic structures with rounded corners. The work determined the difference in resonance wavelength of round-corner and sharp-corner nanobars. We also found how the spectrum precisely shifts as you make thicker nanobars. This reveals insight into another dimension of the structures that allows for more control and tunability of these ."

Explore further: Nano-optical research reveals insight for improved plasmonic grating design

More information: Pijush K. Ghosh et al. Calculated thickness dependent plasmonic properties of gold nanobars in the visible to near-infrared light regime, PLOS ONE (2017). DOI: 10.1371/journal.pone.0177463

Related Stories

Self-assembled nanostructures can be selectively controlled

April 24, 2017

Plasmonic nanoparticles exhibit properties based on their geometries and relative positions. Researchers have now developed an easy way to manipulate the optical properties of plasmonic nanostructures that strongly depend ...

Physicists quantify temperature changes in metal nanowires

January 17, 2014

(Phys.org) —Using the interaction between light and charge fluctuations in metal nanostuctures called plasmons, a University of Arkansas physicist and his collaborators have demonstrated the capability of measuring temperature ...

Fast times and hot spots in plasmonic nanostructures

August 4, 2015

The ability to control the time-resolved optical responses of hybrid plasmonic nanostructures was demonstrated by a team led by scientists in the Nanophotonics Group at the Center for Nanoscale Materials including collaborators ...

Recommended for you

Nanoscale Lamb wave-driven motors in nonliquid environments

March 19, 2019

Light driven movement is challenging in nonliquid environments as micro-sized objects can experience strong dry adhesion to contact surfaces and resist movement. In a recent study, Jinsheng Lu and co-workers at the College ...

OSIRIS-REx reveals asteroid Bennu has big surprises

March 19, 2019

A NASA spacecraft that will return a sample of a near-Earth asteroid named Bennu to Earth in 2023 made the first-ever close-up observations of particle plumes erupting from an asteroid's surface. Bennu also revealed itself ...

The powerful meteor that no one saw (except satellites)

March 19, 2019

At precisely 11:48 am on December 18, 2018, a large space rock heading straight for Earth at a speed of 19 miles per second exploded into a vast ball of fire as it entered the atmosphere, 15.9 miles above the Bering Sea.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.