New materials bring quantum computing closer to reality

May 9, 2017 by Tom Abate, Stanford University
Researchers are developing quantum computers based on light rather than electricity. At Stanford, new materials could be the key to progress in this field. Credit: iStock/Pobytov

For 60 years computers have become smaller, faster and cheaper. But engineers are approaching the limits of how small they can make silicon transistors and how quickly they can push electricity through devices to create digital ones and zeros.

That limitation is why Stanford electrical engineering Professor Jelena Vuckovic is looking to quantum computing, which is based on light rather than electricity. Quantum computers work by isolating spinning electrons inside a new type of semiconductor material. When a laser strikes the electron, it reveals which way it is spinning by emitting one or more quanta, or particles, of light. Those spin states replace the ones and zeros of traditional computing.

Vuckovic, who is one of the world's leading researchers in the field, said quantum computing is ideal for studying biological systems, doing cryptography or data mining – in fact, solving any problem with many variables.

"When people talk about finding a needle in a haystack, that's where quantum computing comes in," she said.

Marina Radulaski, a postdoctoral fellow in Vuckovic's lab, said the problem-solving potential of quantum computers stems from the complexity of the laser-electron interactions at the core of the concept.

"With electronics you have zeros and ones," Radulaski said. "But when the laser hits the electron in a quantum system, it creates many possible spin states, and that greater range of possibilities forms the basis for more complex computing."

Capturing electrons

Harnessing information based on the interactions of light and electrons is easier said than done. Some of the world's leading technology companies are trying to build massive quantum computers that rely on materials super-cooled to near absolute zero, the theoretical temperature at which atoms would cease to move.

In her own studies of nearly 20 years, Vuckovic has focused on one aspect of the challenge: creating new types of quantum computer chips that would become the building blocks of future systems.

"To fully realize the promise of quantum computing we will have to develop technologies that can operate in normal environments," she said. "The materials we are exploring bring us closer toward finding tomorrow's quantum processor."

The challenge for Vuckovic's team is developing materials that can trap a single, isolated electron. Working with collaborators worldwide, they have recently tested three different approaches to the problem, one of which can operate at – a critical step if quantum computing is going to become a practical tool.

In all three cases the group started with semiconductor crystals, material with a regular atomic lattice like the girders of a skyscraper. By slightly altering this lattice, they sought to create a structure in which the atomic forces exerted by the material could confine a spinning electron.

"We are trying to develop the basic working unit of a quantum chip, the equivalent of the transistor on a silicon chip," Vuckovic said.

Quantum dots

One way to create this laser-electron interaction chamber is through a structure known as a quantum dot. Physically, the quantum dot is a small amount of indium arsenide inside a crystal of gallium arsenide. The atomic properties of the two materials are known to trap a spinning electron.

In a recent paper in Nature Physics, Kevin Fischer, a graduate student in the Vuckovic lab, describes how the laser-electron processes can be exploited within such a quantum dot to control the input and output of light. By sending more laser power to the quantum dot, the researchers could force it to emit exactly two photons rather than one. They say the quantum dot has practical advantages over other leading platforms but still requires cryogenic cooling, so it may not be useful for general-purpose computing. However, it could have applications in creating tamper-proof communications networks.

Color centers

In two other papers Vuckovic took a different approach to electron capture, by modifying a single crystal to trap light in what is called a color center.

In a recent paper published in Nano Letters, her team focused on color centers in diamond. In nature the crystalline lattice of a diamond consists of carbon atoms. Jingyuan Linda Zhang, a graduate student in Vuckovic's lab, described how a 16-member research team replaced some of those carbon atoms with . This one alteration created color centers that effectively trapped spinning electrons in the diamond lattice.

But like the quantum dot, most diamond color center experiments require cryogenic cooling. Though that is an improvement over other approaches that required even more elaborate cooling, Vuckovic wanted to do better.

So she worked with another global team to experiment with a third material, . Commonly known as carborundum, silicon carbide is a hard, transparent crystal used to make clutch plates, brake pads and bulletproof vests. Prior research had shown that silicon carbide could be modified to create color centers at room temperature. But this potential had not yet been made efficient enough to yield a quantum chip.

Vuckovic's team knocked certain silicon atoms out of the silicon carbide lattice in a way that created highly efficient color centers. They also fabricated nanowire structures around the to improve the extraction of photons. Radulaski was the first author on that experiment, which is described in another NanoLetters paper. She said the net results – an efficient color center, operating at room temperature, in a material familiar to industry – were huge pluses.

"We think we've demonstrated a practical approach to making a chip," Radulaski said.

But the field is still in its early days and electron tapping is no simple feat. Even the researchers aren't sure which method or methods will win out.

"We don't know yet which approach is best, so we continue to experiment," Vuckovic said.

Explore further: Simultaneous detection of multiple spin states in a single quantum dot

More information: Marina Radulaski et al. Scalable Quantum Photonics with Single Color Centers in Silicon Carbide, Nano Letters (2017). DOI: 10.1021/acs.nanolett.6b05102

Related Stories

Quantum computing advances with control of entanglement

September 27, 2016

When the quantum computer was imagined 30 years ago, it was revered for its potential to quickly and accurately complete practical tasks often considered impossible for mere humans and for conventional computers. But, there ...

The exciting new age of quantum computing

October 25, 2016

What does the future hold for computing? Experts at the Networked Quantum Information Technologies Hub (NQIT), based at Oxford University, believe our next great technological leap lies in the development of quantum computing.

Recommended for you

New technology for diagnosing immunity to Ebola

January 15, 2018

A promising new approach to detect immunity to Ebola virus infection has been developed by researchers from i-sense in a collaboration between UCL and Imperial College London.

4 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

TimLong2001
not rated yet May 09, 2017
Since electrons travel at 2/3 the speed of light, optical computing must have innovative design architectures to process data at significantly better computing speeds. Optical mode interference effects could be an advantage, with refractors, specific wavelength absorbers, order angles with varying peak detection, etc., and not just a reproduction of standard logic based codes.
tblakely1357
not rated yet May 09, 2017
I'm beginning to wonder if usable quantum computing is going to always be 10-20 years in the future like fusion power.
SkyLy
not rated yet May 10, 2017
I'm beginning to wonder if usable quantum computing is going to always be 10-20 years in the future like fusion power.


My exact thought ! You can find 100s of 2000s research paper which promised great technological breakthroughs for today. Yet none of it came out. Hype sells.
antialias_physorg
not rated yet May 10, 2017
You can find 100s of 2000s research paper which promised great technological breakthroughs

You have to read these papers. Each solves a small part of the problem. Science isn't like it's portrayed in Hollywood movies where there's "one breakthrough invention" and then everything is just engineering from there. There's a lot of small (and large) problems to overcome to make quantum computing an everyday reality.

In the end it's also pretty irrelevant for the average consumer. Quantum computers are good at some tasks which conventional computers are bad at. But there are also several areas where conventional computers are way better than quantum computers.

Just because you have a quantum computer doesn't mean you'll get better performance for the stuff you do now (surfing, games, video, .... ). There's actually almost no application in your home that could be made to go noticeably faster/better if it were run on a quantum computer.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.