Simultaneously simulating electrical and optical input achieves unprecedented performance in electro-optical interfaces

April 19, 2017, Agency for Science, Technology and Research (A*STAR), Singapore

A key interface component between electronic and light-based circuits receives a boost in performance through A*STAR research that combines previously independent simulations of the two systems. This research highlights the scope to improve electro-optical circuits as critical components in modern communications systems.

Light offers particular advantages over conventional electronics—it can be transmitted with high fidelity over long distances, and can carry much more information. Optical fiber networks exploit these advantages for fast and efficient data communications. The devices at each end of an optical fiber, however, are usually built on conventional electronics, and the performance of this electro-optical interface is a factor that limits the rate of data transmission.

Much research has focused on the development of faster and smaller electro-optical components that can be integrated into conventional silicon-based electronic circuits and microchips. But progress has been hindered by the complexity of simulating both electronic and optical effects in the same device.

Soon Thor Lim and colleagues from the A*STAR Institute of High Performance Computing found a way to combine electronic and optical effects into a single numerical model. They now demonstrate that it can significantly increase the performance of a silicon optical .

"Optical modulators are electro-optical devices that modify the propagating light by applying electrical pulses," says Lim. "They are used in to encode electronic information into laser beams."

While there are many fabrication parameters for silicon modulators, there are also many fabrication constraints, and so finding the optimal set of parameters requires painstaking computation.

"The problem is that two types of simulation must usually be performed for such research work – electrical followed by optical simulation using two different types of software. This is computationally expensive in terms of simulation time and resources," explains Lim. "Our in-house code performs both electrical and optical simulation in one single platform with no loss in data fidelity."

The team's method allows the electrical-optical interaction inside the modulator to be visualized by showing the light intensity as an overlay on the modulator's distribution of electronic properties. The exact position of the nano-scale features and electronic properties can then be fine-tuned to achieve the best optical performance.

"With modeling and optimization using our in-house code, we can design a silicon modulator with best-in-class ," says Lim, "which will facilitate the development of low-loss, high-speed optical systems."

Explore further: Electro-optical switch transmits data at record-low temperatures

More information: Ching Eng Png et al. Numerical Modeling and Analysis for High-Efficiency Carrier-Depletion Silicon Rib-Waveguide Phase Shifters, IEEE Journal of Selected Topics in Quantum Electronics (2016). DOI: 10.1109/JSTQE.2016.2564648

Related Stories

Photonics: Enabling next-generation wireless networks

March 12, 2014

Wireless transmission at microwave frequencies is important for high-data-rate transmission applications, such as mobile phone networks, satellite links and remote imaging. Now, Xianshu Luo and colleagues from the A*STAR ...

Three-dimensional opto-electric integration

February 18, 2015

Three-dimensional (3D) integration of various materials on top of bulk silicon could be the best answer for cost-effectively marrying optical devices with electronics. A*STAR researchers have used this approach to create ...

Ultracompact photodetector for optical data transmission

August 2, 2016

Data traffic is growing worldwide. Glass-fiber cables transmit information over long distances at the speed of light. Once they have reached their destination, however, these optical signals have to be converted into electrical ...

Recommended for you

Researchers turn light upside down

February 23, 2018

Researchers from CIC nanoGUNE (San Sebastian, Spain) and collaborators have reported in Science the development of a so-called hyperbolic metasurface on which light propagates with completely reshaped wafefronts. This scientific ...

Recurrences in an isolated quantum many-body system

February 23, 2018

It is one of the most astonishing results of physics—when a complex system is left alone, it will return to its initial state with almost perfect precision. Gas particles, for example, chaotically swirling around in a container, ...

Hauling antiprotons around in a van

February 22, 2018

A team of researchers working on the antiProton Unstable Matter Annihilation (PUMA) project near CERN's particle laboratory, according to a report in Nature, plans to capture a billion antiprotons, put them in a shipping ...

Urban heat island effects depend on a city's layout

February 22, 2018

The arrangement of a city's streets and buildings plays a crucial role in the local urban heat island effect, which causes cities to be hotter than their surroundings, researchers have found. The new finding could provide ...

New quantum memory stores information for hours

February 22, 2018

Storing information in a quantum memory system is a difficult challenge, as the data is usually quickly lost. At TU Wien, ultra-long storage times have now been achieved using tiny diamonds.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.