Simultaneously simulating electrical and optical input achieves unprecedented performance in electro-optical interfaces

April 19, 2017, Agency for Science, Technology and Research (A*STAR), Singapore

A key interface component between electronic and light-based circuits receives a boost in performance through A*STAR research that combines previously independent simulations of the two systems. This research highlights the scope to improve electro-optical circuits as critical components in modern communications systems.

Light offers particular advantages over conventional electronics—it can be transmitted with high fidelity over long distances, and can carry much more information. Optical fiber networks exploit these advantages for fast and efficient data communications. The devices at each end of an optical fiber, however, are usually built on conventional electronics, and the performance of this electro-optical interface is a factor that limits the rate of data transmission.

Much research has focused on the development of faster and smaller electro-optical components that can be integrated into conventional silicon-based electronic circuits and microchips. But progress has been hindered by the complexity of simulating both electronic and optical effects in the same device.

Soon Thor Lim and colleagues from the A*STAR Institute of High Performance Computing found a way to combine electronic and optical effects into a single numerical model. They now demonstrate that it can significantly increase the performance of a silicon optical .

"Optical modulators are electro-optical devices that modify the propagating light by applying electrical pulses," says Lim. "They are used in to encode electronic information into laser beams."

While there are many fabrication parameters for silicon modulators, there are also many fabrication constraints, and so finding the optimal set of parameters requires painstaking computation.

"The problem is that two types of simulation must usually be performed for such research work – electrical followed by optical simulation using two different types of software. This is computationally expensive in terms of simulation time and resources," explains Lim. "Our in-house code performs both electrical and optical simulation in one single platform with no loss in data fidelity."

The team's method allows the electrical-optical interaction inside the modulator to be visualized by showing the light intensity as an overlay on the modulator's distribution of electronic properties. The exact position of the nano-scale features and electronic properties can then be fine-tuned to achieve the best optical performance.

"With modeling and optimization using our in-house code, we can design a silicon modulator with best-in-class ," says Lim, "which will facilitate the development of low-loss, high-speed optical systems."

Explore further: Electro-optical switch transmits data at record-low temperatures

More information: Ching Eng Png et al. Numerical Modeling and Analysis for High-Efficiency Carrier-Depletion Silicon Rib-Waveguide Phase Shifters, IEEE Journal of Selected Topics in Quantum Electronics (2016). DOI: 10.1109/JSTQE.2016.2564648

Related Stories

Photonics: Enabling next-generation wireless networks

March 12, 2014

Wireless transmission at microwave frequencies is important for high-data-rate transmission applications, such as mobile phone networks, satellite links and remote imaging. Now, Xianshu Luo and colleagues from the A*STAR ...

Three-dimensional opto-electric integration

February 18, 2015

Three-dimensional (3D) integration of various materials on top of bulk silicon could be the best answer for cost-effectively marrying optical devices with electronics. A*STAR researchers have used this approach to create ...

Ultracompact photodetector for optical data transmission

August 2, 2016

Data traffic is growing worldwide. Glass-fiber cables transmit information over long distances at the speed of light. Once they have reached their destination, however, these optical signals have to be converted into electrical ...

Recommended for you

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...

Trembling aspen leaves could save future Mars rovers

March 18, 2019

Researchers at the University of Warwick have been inspired by the unique movement of trembling aspen leaves, to devise an energy harvesting mechanism that could power weather sensors in hostile environments and could even ...

Quantum sensing method measures minuscule magnetic fields

March 15, 2019

A new way of measuring atomic-scale magnetic fields with great precision, not only up and down but sideways as well, has been developed by researchers at MIT. The new tool could be useful in applications as diverse as mapping ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.