Scientists study the problem of hydrodynamic stability of Keplerian flow

April 20, 2017, Lomonosov Moscow State University

Researches from Sternberg Astronomical Institute, Lomonosov Moscow State University, have focused their efforts on one of the major theoretical issues of modern astrophysical fluid dynamics, which is the stability of Keplerian shear flow of liquid or gas. The results are available in the Monthly Notices of the Royal Astronomical Society journal.

Keplerian is ubiquitous in space. It appears in accretion and protoplanetary discs, where fluid rotates differentially so that its angular velocity decreases inversely to the distance from the rotation axis to the three-halves power.

Dr. Viacheslav Zhuravlev of Lomonosov Moscow State University and the author of the paper says, "Numerous observations reveal that both accretion and protoplanetary discs are in a turbulent state. Nevertheless, no one has managed so far to model or simulate in laboratory conditions turbulent Keplerian flow of non-ionized matter. In other words, unlike the other known shear flows, Keplerian flow manifests amazing nonlinear dynamical stability. To date, this stability has been checked up to the Reynolds number of several millions. However, in real astrophysical discs, the Reynolds number can be as high as tens of billions."

In the project, the authors suppose that Keplerian flow breaks into a turbulent state at the Reynolds number not yet attained in the research. As turbulence cannot exist in the absence of growing perturbations of velocity and pressure, they consider in detail how large the growth factor of transiently growing perturbations can be. Generally, those perturbations arise in the form of spirals being unwound by the differential rotation of the bulk flow.

Viacheslav Zhuravlev says, "We've managed to show for the first time that such perturbations are able to sustain turbulence also at scales significantly exceeding the disc thickness. Additionally, we predict a value of the Reynolds number corresponding to transition to turbulence both in Keplerian and super-Keplerian flows."

The researchers have been solving the linearised Navier-Stokes equations both numerically and analytically. Moreover, for the first time in astrophysical scientific literature, they have employed a so-called variational approach in order to determine the optimal perturbations that demonstrate the highest possible growth of amplitude.

The scientist sums up: "We are going to carry out a set of special computer simulations, which will help to reveal an exact mechanism of the shear flow stabilization in the model situation, when the angular velocity profile evolves from a so-called cyclonic type to the Keplerian type. In turn, this will contribute to better understanding of the behavior of Keplerian flow and the evolution of finite amplitude perturbations in it . We believe that the discovery of the nonlinear hydrodynamical instability of Keplerian flow is nearly at hand. In fact, it is directly related to the explanation of the very existence of accretion and protoplanetary discs and, consequently, to the emergence of many other objects in the universe."

Explore further: Video: Zombie vortices in protoplanetary disks and their roles in star and planet formation

More information: D. N. Razdoburdin et al, Transient growth of perturbations on scales beyond the accretion disc thickness, Monthly Notices of the Royal Astronomical Society (2017). DOI: 10.1093/mnras/stx050

Related Stories

What does turbulence have in common with an epidemic?

February 16, 2016

Fluid flows can take one of two forms: well-ordered "laminar" or highly disordered "turbulent" motion. Although everyday experience shows that laminar motion in simple shear flows as in pipes or channels gives way to turbulence ...

Understanding a novel form of turbulence

June 5, 2012

French researchers from CNRS have provided solutions to important problems related to turbulent flow in stratified systems such as the oceans and the atmosphere.

Recommended for you

Exploring planetary plasma environments from your laptop

June 15, 2018

A new database of plasma simulations, combined with observational data and powerful visualisation tools, is providing planetary scientists with an unprecedented way to explore some of the Solar System's most interesting plasma ...

NASA encounters the perfect storm for science

June 14, 2018

One of the thickest dust storms ever observed on Mars has been spreading for the past week and a half. The storm has caused NASA's Opportunity rover to suspend science operations, but also offers a window for four other spacecraft ...

The most distant radio galaxy discovered

June 14, 2018

An international team of astronomers has detected a new high-redshift radio galaxy (HzRG). The newly identified HzRG, designated TGSS1530, was found at a redshift of 5.72, meaning that it is the most distant radio galaxy ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.