Nanotubes that build themselves

April 13, 2017
Researchers from the University of Dayton have showed that carbon nanotubes can replace platinum as the catalyst in fuel cells, which could significantly reduce fuel cells' overall cost.

Researchers from Lund University in Sweden have succeeded in producing nanotubes from a single building block using so-called molecular self-recognition. The tube can also change shape depending on the surrounding environment. The results can contribute to the future development of transport channels for drugs through the cell membrane.

In the present study, researchers from Lund University in Sweden, together with colleagues from Vilnius University in Lithuania, have studied how molecules attach to each other using weak chemical bonds to form large structures.

The aim of the study was to determine the smallest possible size of these molecules, in which they are still able to provide enough information to successfully attach and form a desired large structure. The researchers' strategy has been to use many weak hydrogen bonds which assemble themselves in a pre-programmed manner.

"It took 20 years for us to discover the design of this molecule which resulted in molecular nanotubes", says Kenneth Wärnmark, chemistry professor at the Faculty of Science at Lund University.

As a unique bonus, they also discovered that the molecule can construct different shapes, depending on its environment. The researchers are able to modify this environment, partly, through their choice of solvent and, partly, through their choice of a so-called "guest molecule".

"The can form a tube, but also change into the shape of a capsule or a molecular belt", Kenneth Wärnmark.

Unlike the developed carbon nanotubes which are already on the market, the new molecular nanotubes can be regulated with regard to the diameter. Furthermore, the manufacturing process is both simpler and more environmentally friendly compared to that of the carbon which are made from individual carbon atoms and are assembled using strong chemical bonds at high temperature.

"Being able to regulate the diameter is importance if you, for instance, want to use the tubes to transport something inside", says Kenneth Wärnmark.

One possible application is the transport of drugs through a for which the molecular nanotube can serve as a channel. The diameter of the tube and the properties of its surface make it suitable for transporting substances that regulate nerve signals in the human body, such as acetylcholine.

"People with Alzheimer's disease suffer from acetylcholine deficiency and hopefully, in the future, this could be a way to reduce the impact of the disease. However, it requires a lot more research as well as clinical studies before we know whether or not it works", says Kenneth Wärnmark.

Explore further: Modern alchemy creates luminescent iron molecules

More information: Qixun Shi et al. Stimuli-controlled self-assembly of diverse tubular aggregates from one single small monomer, Nature Communications (2017). DOI: 10.1038/ncomms14943

Related Stories

Modern alchemy creates luminescent iron molecules

March 30, 2017

A group of researchers at Lund University in Sweden have made the first iron-based molecule capable of emitting light. This could contribute to the development of affordable and environmentally friendly materials for e.g. ...

Tiny tubes move into the fast lane

April 4, 2016

For the first time, Lawrence Livermore National Laboratory (LLNL) researchers have shown that carbon nanotubes as small as eight-tenths of a nanometer in diameter can transport protons faster than bulk water, by an order ...

Scientists study the types of carbon nanotube 'stuffing'

June 3, 2016

Marianna Kharlamova of the Lomonosov Moscow State University Department of Materials Science examined different types of carbon nanotube "stuffing" and classified them according to the influence on the properties of the nanotubes. ...

Recommended for you

Chemical treatment improves quantum dot lasers

October 16, 2017

One of the secrets to making tiny laser devices such as opthalmic surgery scalpels work even more efficiently is the use of tiny semiconductor particles, called quantum dots. In new research at Los Alamos National Laboratory's ...

Low-cost battery from waste graphite

October 11, 2017

Lithium ion batteries are flammable and the price of the raw material is rising. Are there alternatives? Yes: Empa and ETH Zürich researchers have discovered promising approaches as to how we might produce batteries out ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.