The dynamic surface tension of water

April 3, 2017
The dynamic surface tension of water
The release of a water droplet. Credit: I.M. Hauner et al.

The surface tension of a liquid is a measure of the cohesive forces that hold the molecules together. It is responsible for a water drop assuming a spherical shape and for the effects of surfactants to produce bubbles and foams. The value of the surface tension of water at room temperature is known accurately to four significant figures and is recommended as a standard for the calibration of other devices. New research in which Ines Hauner and Daniel Bonn (Institute of Physics) are involved now shows that this value is not as universal as previously believed.

The recent experiments show, astonishingly, that a newly created, pristine air/ interface has a that is approximately 25 % higher than the equilibrium value, which is known to be 72.75 mN/m. Researchers from Amsterdam, Bordeaux and Sydney show that a fresh unequilibrated air/water interface has a surface tension of around 90 mN/m. They used a to observe the release of a water droplet resulting from the breakup of the liquid neck that connects the drop to the orifice - see image. Their analysis of the breakup dynamics on a millisecond time scale gives a surface tension of around 90 mN/m.

In the past, similar higher-than-equilibrium surface tension values for water had in fact been reported on such short time scales. However, they have all remained highly controversial due to methodological shortcomings. In contrast, Professor Bonn states that "the method of studying droplet breakup dispenses with the previous difficulties: the experimental procedure is very robust, and the associated pinch-off dynamics well understood."

Why has such a large discrepancy been overlooked for so long? The reason is that the lifetime of the pristine state is less than a millisecond. Older technologies have slower response times; only modern methods probe microsecond regimes. Another remarkable aspect of this discovery is the magnitude of the effect. When sodium chloride or sodium hydroxide is added to water in a concentration of one mole per liter, the equilibrium surface tension changes by only about 2 mN/m. In contrast, the effect reported in the new experiments produces a 17 mN/m change. This is much larger than the consequence of any electrolyte effect and must involve the structure of the interfacial water.

There are profound consequences of this discovery for all processes involving water in sub-millisecond times. For example, the entire sequence of events in inkjet printing occurs in this time range and involves aqueous inks forming droplets at MHz frequencies. Many spraying applications in which water is used should also be affected: a high value of the tension should make it more difficult to produce small droplets. In addition, there is a vast literature that attempts to explain the value of the of water of 73 mN/m, but so far nobody considered that the pristine surface has an even higher value.

Explore further: Theoretical model reveals how droplets grow around tiny particles on a surface

More information: Ines M. Hauner et al. The Dynamic Surface Tension of Water, The Journal of Physical Chemistry Letters (2017). DOI: 10.1021/acs.jpclett.7b00267

Related Stories

Researchers identify movement of droplets on soft surfaces

August 5, 2015

Researchers from the University of Twente have succeeded in clearly identifying why droplets on soft, squishy surfaces react differently than on hard surfaces. A water droplet, for example, moves very differently over jelly ...

New surface makes oil contamination remove itself

June 17, 2016

Researchers of Aalto University have developed surfaces where oil transports itself to desired directions. Researchers' oleophobic surfaces are microtextured with radial arrays of undercut stripes. When oil drops fall on ...

Acetone experiences Leidenfrost effect, no hotplate needed

March 14, 2017

In doing his due diligence, cleaning his lab equipment, fluid physicist Stoffel Janssens from the Mathematical Soft Matter Unit in the Okinawa Institute of Science and Technology (OIST), Okinawa, Japan, took notice of the ...

Rewrite the textbooks on water's surface tension

March 19, 2014

Researchers from the University of Melbourne and University of Sydney are confident their new reaserach results will make significant differences to the calculations of surface tension of water used by the next generation ...

Recommended for you

Carefully crafted light pulses control neuron activity

November 17, 2017

Specially tailored, ultrafast pulses of light can trigger neurons to fire and could one day help patients with light-sensitive circadian or mood problems, according to a new study in mice at the University of Illinois.

Strain-free epitaxy of germanium film on mica

November 17, 2017

Germanium, an elemental semiconductor, was the material of choice in the early history of electronic devices, before it was largely replaced by silicon. But due to its high charge carrier mobility—higher than silicon by ...

New imaging technique peers inside living cells

November 16, 2017

To undergo high-resolution imaging, cells often must be sliced and diced, dehydrated, painted with toxic stains, or embedded in resin. For cells, the result is certain death.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.