CRISPR mines bacterial genome for hidden pharmaceutical treasure

April 11, 2017 by Liz Ahlberg Touchstone
Illinois researchers used CRISPR technology to activate silent gene clusters in Streptomyces bacteria, a potential treasure trove of new classes of drugs. Pictured, clockwise from back middle: graduate student Behnam Enghiad, postdoctoral researcher Shangwen Luo, graduate student Tajie Luo and professor Huimin Zhao. Credit: L. Brian Stauffer

In the fight against disease, many weapons in the medicinal arsenal have been plundered from bacteria themselves. Using CRISPR-Cas9 gene-editing technology, researchers have now uncovered even more potential treasure hidden in silent genes.

A new study from researchers at the University of Illinois and colleagues at the Agency for Science, Technology and Research in Singapore used CRISPR technology to turn on unexpressed, or "silent," in Streptomyces, a common class of bacteria that naturally produce many compounds that have already been used as antibiotics, anti-cancer agents and other drugs. The study, led by chemical and biomolecular engineering professor Huimin Zhao, was published in the journal Nature Chemical Biology.

"In the past, researchers just screened the that bacteria made in the lab to search for new drugs," Zhao said. "But once whole bacterial genomes were sequenced, we realized that we have only discovered a small fraction of the natural products coded in the genome.

"The vast majority of biosynthetic gene clusters are not expressed under laboratory conditions, or are expressed at very low levels. That's why we call them silent. There are a lot of new drugs and new knowledge waiting to be discovered from these silent gene clusters. They are truly hidden treasures."

To mine for undiscovered genomic treasure, the researchers first used computational tools to identify silent biosynthetic gene clusters - small groups of involved in making chemical products. Then they used CRISPR technology to insert a strong promoter sequence before each gene that they wanted to activate, prompting the cell to make the natural products that the genes clusters coded for.

"This is a less-explored direction with the CRISPR . Most CRISPR-related research focuses on biomedical applications, like treating genetic diseases, but we are using it for discovery," Zhao said. His lab was the first to adapt the CRISPR system for Streptomyces. "In the past, it was very difficult to turn on or off a specific gene in Streptomyces species. With CRISPR, now we can target almost any gene with high efficiency."

The team succeeded in activating a number of silent biosynthetic gene clusters. To look for drug candidates, each product needs to be isolated and studied to determine what it does. As a demonstration, the researchers isolated and determined the structure of one of the novel compounds produced from a silent biosynthetic gene , and found that it has a fundamentally different structure from other Streptomyces-derived drugs - a potential diamond in the rough.

Zhao said such new compounds could lead to new classes of drugs that elude antibiotic resistance or fight cancer from a different angle.

"Antimicrobial resistance is a global challenge. We want to find new modes of action, new properties, so we can uncover new ways to attack cancer or pathogens. We want to identify new chemical scaffolds leading to , rather than modifying existing types of drugs," he said.

Explore further: Unlocking the potential of bacterial gene clusters to discover new antibiotics

More information: Mingzi M Zhang et al, CRISPR–Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters, Nature Chemical Biology (2017). DOI: 10.1038/nchembio.2341

Related Stories

A molecular on/off switch for CRISPR

March 28, 2017

Picture bacteria and viruses locked in an arms race. For many bacteria, one line of defense against viral infection is a sophisticated RNA-guided "immune system" called CRISPR-Cas. At the center of this system is a surveillance ...

Gene editing technique helps find cancer's weak spots

March 20, 2017

Genetic mutations that cause cancer also weaken cancer cells, creating an opportunity for researchers to develop drugs that will selectively kill them, while sparing normal cells. This concept is called "synthetic lethality" ...

Recommended for you

Hot vibrating gases under the electron spotlight

December 12, 2017

Natural gas is used in refineries as the basis for products like acetylene. The efficiency of gaseous reactions depends on the dynamics of the molecules—their rotation, vibration and translation (directional movement). ...

Bacteria development marks new era in cellular design

December 11, 2017

Scientists at the universities of Kent and Bristol have built a miniature scaffold inside bacteria that can be used to bolster cellular productivity, with implications for the next generation of biofuel production.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.