Perovskite edges can be tuned for optoelectronic performance

March 9, 2017
How it works, from sunshine (yellow beam) to LED light and photovoltaics -- Edge-states at the edges of the 2D perovskite layers lead to dissociation of electron-hole pairs (excitons) to free carriers for efficient photovoltaics of more than 12 percent (left). Dissociated carriers captured and located at the edge-states live longer while being protected from loss mechanisms (right), which results in efficient fluorescence of a few tens of percent applicable to next-generation LEDs. (top) Material structure sketching the stacking of nanometer-thick layers of 2D perovskite and organic spacing layers. Credit: Los Alamos National Laboratory

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating innovative 2D layered hybrid perovskites that allow greater freedom in designing and fabricating efficient optoelectronic devices. Industrial and consumer applications could include low cost solar cells, LEDs, laser diodes, detectors, and other nano-optoelectronic devices.

"Our material is a layered compound, meaning it is a stack of 2D layers of perovskites with nanometer thickness (like a stack of sheets), and the 2D perovskite layers are separated by thin organic layers," said Jean-Christophe Blancon, lead author on a paper out today in the journal Science's First Release distribution. "This work could overturn conventional wisdom on the limitations of device designs based on layered perovskites."

The 2D, near-single-crystalline "Ruddlesden-Popper" thin films have an out-of-plane orientation so that uninhibited charge transport occurs through the perovskite layers in planar devices. At the edges of the perovskite layers, the new research discovered "layer-edge-states," which are key to both high efficiency of (>12 percent) and high fluorescence efficiency (a few tens of percent) for LEDs. The spontaneous conversion of excitons (bound electron-hole pairs) to free carriers via these layer-edge states appears to be the key to improving the photovoltaic and light-emitting thin-film layered materials.

The video will load shortly

The team investigated both photophysical and of phase-pure homogenous 2D perovskites. They were able to show that thin films have an intrinsic mechanism for dissociation of the strongly bound (excitons) to long-lived free-carriers provided by lower energy states at the edges of the layered perovskites.

Moreover, once carriers are trapped in these edge states, they remain protected and do not lose their energy via non-radiative processes. They can contribute to photocurrent in a photovoltaic (PV) device or radiatively recombine efficiently for light-emission applications. "These materials are quantum hybrid materials, possessing physical properties of both organic semiconductors and inorganic semiconducting quantum wells. We are just beginning to understand the interplay of the organic and inorganic components in 2D perovskites and this result underpins how unique properties can arise from competing physical properties," said Jared Crochet of the Physical Chemistry and Applied Spectroscopy group at Los Alamos.

"These results address a long-standing problem not just for the perovskite family, but relevant to a large group of materials where edges and surface states generally degrade the optoelectronic properties, which can now be chemically designed and engineered to achieve efficient flow of charge and energy leading to high-efficiency optoelectronic devices," said Aditya Mohite, who leads the perovskite program in the Material Synthesis and Integrated devices group at Los Alamos.

"The 2D hybrid perovskites continue to surprise. When we first designed these materials we were hoping that high quality samples of them would exhibit novel optoelectronic properties," said co-author Mercouri Kanatzidis of Northwestern University. "Well, they have done so and then some. They have exceeded our expectations and are proving to be truly amazing systems. We have only scratched the surface of what is there—sorry for the pun—in this 2D family and we anticipate continued excitement going forward."

Explore further: New material holds promise to create more flexible, efficient technologies

More information: "Extremely efficient internal exciton dissociation through edge states in layered 2-D perovskites," Science 09 Mar 2017: DOI: 10.1126/science.aal4211

Related Stories

Flipping crystals improves solar-cell performance

July 6, 2016

In a step that could bring perovskite crystals closer to use in the burgeoning solar power industry, researchers from Los Alamos National Laboratory, Northwestern University and Rice University have tweaked their crystal ...

Self-assembling particles brighten future of LED lighting

January 16, 2017

Just when lighting aficionados were in a dark place, LEDs came to the rescue. Over the past decade, LED technologies—short for light-emitting diode—have swept the lighting industry by offering features such as durability, ...

Stability challenge in perovskite solar cell technology

December 23, 2016

While solar cell technology is currently being used by many industrial and government entities, it remains prohibitively expensive to many individuals who would like to utilize it.. There is a need for cheaper, more efficient ...

Recommended for you

Tick protein helps antibiotics combat MRSA super bug

April 27, 2017

A protein derived from ticks enhances the effectiveness of antibiotic treatment for methicillin-resistant Staphylococcus aureus, or MRSA, according to a Yale-led study. The strategy of using the protein in combination with ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.