Optical fingerprint can reveal pollutants in the air

March 15, 2017, Chalmers University of Technology
Molecules are identified by activating dark electronic states in the sensor material, resulting in a new visible peak. The altered optical fingerprint of the material proves the presence of molecules. Credit: Maja Feierabend and Ermin Malic

More efficient sensors are needed to be able to detect environmental pollution. Researchers at Chalmers University of Technology have proposed a new, sophisticated method of detecting molecules with sensors based on ultra-thin nanomaterials. The novel method could improve environmental sensing in the future. The results are published today in the scientific journal Nature Communications.

"This could open up new possibilities for the detection of environmental gases. Our method is more robust than conventional sensors, which rely on small changes in optical properties", says Maja Feierabend, PhD student at the Department of Physics and the main author of the article from Chalmers University of Technology and Technische Universität Berlin.

Together with her supervisor, Associate Professor Ermin Malic, and Gunnar Berghäuser, postdoctoral researcher at Chalmers, she has proposed a new type of chemical nanosensor that consists of atomically thin nanomaterials that are extremely sensitive to changes in their surroundings.

If you shine light on the sensor, you will see the optical fingerprint of the material itself. Molecules are identified by activating dark electronic states in the sensor material. If there are molecules on its surface, they will interact with these dark states and switch them on, making them visible. The result is an altered , containing new features that prove the presence of the .

"Our method has promising potential, paving the way for ultra-thin, fast, efficient and accurate sensors. In the future, this could hopefully lead to highly sensitive and selective sensors that can be used in environmental research", says Ermin Malic.

The researchers have filed a patent application for the novel sensor . The next step is to work with experimental physicists and chemists to demonstrate the proof-of-principle for this new class of chemical .

Explore further: Tunable porous MOF materials interface with electrodes to sound the alarm at the first sniff of hydrogen sulfide

More information: "Proposal for dark exciton based chemical sensors" in Nature Communications. DOI: 10.1038/ncomms14776

Related Stories

Faster manufacturing of breath sensors

November 16, 2016

A group of researchers at Osaka University, succeeded in producing nanostructured gas sensor devices for detecting volatile organic compounds (VOC) in breath for the purpose of healthcare in time equivalent to or shorter ...

Ultra-fast, ultra-sensitive PtSe2 gas sensors

January 13, 2017

Researchers from Trinity College Dublin, Ireland have shown that PtSe2, a little-studied transition metal dichalcogenide has potential for a variety of uses. In particular, PtSe2 is an excellent high performance gas sensor, ...

Recommended for you

Atoms may hum a tune from grand cosmic symphony

April 19, 2018

Researchers playing with a cloud of ultracold atoms uncovered behavior that bears a striking resemblance to the universe in microcosm. Their work, which forges new connections between atomic physics and the sudden expansion ...

Integrating optical components into existing chip designs

April 19, 2018

Two and a half years ago, a team of researchers led by groups at MIT, the University of California at Berkeley, and Boston University announced a milestone: the fabrication of a working microprocessor, built using only existing ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.