NASA spacecraft investigate clues in radiation belts

March 27, 2017 by Mara Johnson-Groh, NASA's Goddard Space Flight Center
The twin Van Allen Probes orbit one behind the other, investigating clues in a way a single spacecraft never could. In this model, the trailing spacecraft saw an increase in injected oxygen particles (blue), which was unobserved by the first. The increase in particles was due to a geomagnetic storm front that moved across the path of the orbit after the first spacecraft passed. Credit: NASA's Goddard Space Flight Center/Mike Henderson/Joy Ng, Producer

High above Earth, two giant rings of energetic particles trapped by the planet's magnetic field create a dynamic and harsh environment that holds many mysteries—and can affect spacecraft traveling around Earth. NASA's Van Allen Probes act as space detectives, to help study the complex particle interactions that occur in these rings, known as the Van Allen radiation belts. Recently, the spacecraft were in just the right place, at just the right time, to catch an event caused by the fallout of a geomagnetic storm as it happened. They spotted a sudden rise in particles zooming in from the far side of the planet, improving our understanding of how particles travel in near-Earth space.

The two twin Van Allen Probe spacecraft orbit one behind the other, investigating clues in a way a single spacecraft never could. On one typical day, as the first instrument traveled around Earth, it spotted nothing unusual, but the second, following just an hour later, observed an increase in oxygen particles speeding around Earth's dayside—the side nearest the sun. Where did these particles come from? How had they become so energized?

Scientists scoured the clues to figure out what was happening. With the help of computer models, they deduced that the particles had originated on the night side of Earth before being energized and accelerated through interactions with Earth's . As the particles journeyed around Earth, the lighter hydrogen were lost in collisions with the atmosphere, leaving an oxygen-rich plasma. The findings were presented in a recent paper in Geophysical Review Letters.

The unique double observations of the Van Allen Probes help untangle the complex workings of Earth's magnetic environment. Such information has provided the very first view of these harsh belts from the inside—and it helps us better protect satellites and astronauts traveling through the region.

Explore further: Relativistic electrons uncovered with NASA's Van Allen Probes

More information: M. H. Denton et al. The complex nature of storm-time ion dynamics: Transport and local acceleration, Geophysical Research Letters (2016). DOI: 10.1002/2016GL070878

Related Stories

Studying magnetic space explosions with NASA missions

March 9, 2017

Every day, invisible magnetic explosions are happening around Earth, on the surface of the sun and across the universe. These explosions, known as magnetic reconnection, occur when magnetic field lines cross, releasing stored ...

Recommended for you

NASA's First Image of Mars from a CubeSat

October 23, 2018

NASA's MarCO mission was designed to find out if briefcase-sized spacecraft called CubeSats could survive the journey to deep space. Now, MarCO—which stands for Mars Cube One—has Mars in sight.

Gravitational waves could shed light on dark matter

October 22, 2018

The forthcoming Laser Interferometer Space Antenna (LISA) will be a huge instrument allowing astronomers to study phenomena including black holes colliding and gravitational waves moving through space-time. Researchers from ...

Astronomers propose a new method for detecting black holes

October 22, 2018

A stellar mass black hole is a compact object with a mass greater than three solar masses. It is so dense and has such a powerful force of attraction that not even light can escape from it. They cannot be observed directly, ...

Scientist explores a better way to predict space weather

October 22, 2018

Findings recently published by a Southwest Research Institute (SwRI) space scientist shed new light on predicting the thermodynamics of solar flares and other "space weather" events involving hot, fast-moving plasmas.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.