
 

Machine learning lets scientists reverse-
engineer cellular control networks

March 22 2017, by Aaron Dubrow

  
 

  

In vivo validation of the computationally-discovered, partially converted tadpole
phenotype. Credit: Daniel Lobo, Maria Lobikin, Michael Levin
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The flow of information between cells in our bodies is exceedingly
complex: sensing, signaling, and influencing each other in a constant
flow of microscopic engagements. These interactions are critical for life,
and when they go awry can lead to the illness and injury.

Scientists have isolated thousands of individual cellular interactions, but
to chart the network of reactions that leads cells to self-organize into
organs or form melanomas has been an extreme challenge.

"We, as a community are drowning in quantitative data coming from
functional experiments," says Michael Levin, professor of biology at
Tufts University and director of the Allen Discovery Center there.
"Extracting a deep understanding of what's going on in the system from
the data in order to do something biomedically helpful is getting harder
and harder."

Working with Maria Lobikin, a Ph.D. student in his lab, and Daniel
Lobo, a former post-doc and now assistant professor of biology and
computer science at the University of Maryland, Baltimore County
(UMBC), Levin is using machine learning to uncover the cellular control
networks that determine how organisms develop, and to design methods
to disrupt them. The work paves the way for computationally-designed
cancer treatments and regenerative medicine.

"In the end, the value of machine learning platforms is in whether they
can get us to new capabilities, whether for regenerative medicine or
other therapeutic approaches," Levin says.

Writing in Scientific Reports in January 2016, the team reported the
results of a study where they created a tadpole with a form of mixed
pigmentation never before seen in nature. The partial conversion of
normal pigment cells to a melanoma-like phenotype—accomplished
through a combination of two drugs and a messenger RNA—was

2/10

https://phys.org/tags/cells/
https://phys.org/tags/regenerative+medicine/
https://phys.org/tags/pigment+cells/


 

predicted by their machine learning code and then verified in the lab.

Their work was facilitated by the Stampede supercomputer at the Texas
Advanced Computing Center—one of the most powerful in the
world—which enabled the team to run billions of simulations in order to
model of the cellular network and the means of altering it.

Hacking the (cell) network

Tadpoles from the Xenopus genus of aquatic frogs possess a group of
pigment cells that the Levin lab previously showed could be converted to
a melanoma-like outcome by interrupting their electrical communication
with other cell types.

Through years of experiments, they found that various treatments could
induce conversions, but some treated animals would convert and some
wouldn't.

"The outcome was probabilistic, like tossing a biased coin," Levin says.
"But remarkably, all of the cells were tossing the same coin: a given
animal would either convert or not, as a whole. Individual cells did not
make independent decisions."
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Reverse-engineered network that produces hyperpigmentation phenotype at
frequencies matching those observed experimentally. Credit: Maria Lobikin,
Daniel Lobo, Douglas J. Blackiston, Christopher J. Martyniuk, Elizabeth
Tkachenko, Michael Levin

One of the most important tests of their artificial intelligence-derived
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model was to see if it could be used to discover a treatment that would
break the normal concordance among cells, and induce a salt-and-pepper
pattern in which individual cells within a single tadpole would choose to
become melanoma-like or not.

They were not only able to produce this effect, but to predict the
percentage of the population of tadpoles that would have the mixed
pigmentation.

"I was blown away by the fact that the machine learning platform got us
to a capability to do something we couldn't do before, at the bench, in
real living organisms," Levin says. "It was good enough to predict new
outcomes to experiments that no one had done before."

Mapping the model

The results expanded on previous research by the team that used
machine learning to derive the cellular control model for Xenopus. To
identify the model, the team input the results of nearly a decade's worth
of laboratory experiments into Stampede, as well as the facts they had
learned from these experiments and those of other labs working on these
pathways.

The existing experiments showed a variety of ways that a drug or protein
might affect a given process or cellular receptor, but not the full picture
of how the complex system interrelated or how the signaling dynamics
gave rise to specific frequencies of melanoma-converted animals from a
given treatment applied to a population of animals.

Lobo developed a code that treated the drug and cellular interactions as
nodes on a network and characterized how each component behaved as a
differential equation. The code then randomly combined the various
equations at each node as a chain of interactions and scored how close
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this network of interactions came to reproducing the lab experiments.

It dismissed the results that did not approximate the experimental
outcomes, kept those that were closer, and then recombined the
components.

Repeating this cycle many times, the combination of processes got better
and better in a manner akin to evolution, until it arrived at a system
capable of predicting laboratory results. This method, called
evolutionary computation, has been used for decades in high-
performance computing, but never before for the problem of cellular
control networks.

"This approach uses a lot of computational power," Lobo says. "The
model is not deterministic. So just as we apply a drug to 100 tadpoles,
we have to simulate the model 100 times to get an accurate result. Even
if the models are fast to compute, the machine learning algorithm needs
to compute billions of simulations to precisely discover the correct
equations explaining the data."

The team reported the results of this initial work in Science Signaling in
October 2015.
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Artificial intelligence has been used to discover the exact interventions needed to
obtain a specific, brand-new result in a living organism. Pigment cells over a
tadpole's left eye became cancer-like; those over the right eye remained normal.
Credit: Patrick Collins, Tufts University
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Reverse-engineering interventions

With this model in hand, they began reverse-engineering drug
interventions that might create a specific result: speckled tadpoles.

Performing 562 of the type of experiments they would typically do in
the lab virtually on Stampede, the model predicted exactly one path to
speckled pigmentation: the combination of three reagents—two drug
inhibitors and one messenger RNA—that would break the all-or-none
concordance.

Laboratory experiments confirmed this prediction, resulting in the
partial conversion of pigment cells within individual tadpoles.

The model they derived has only been tested in amphibia so far,
although the specific pathways targeted are conserved in humans.
Moreover, the methodology for model discovery and interrogation will
be applicable to a wide range of phenomena.

"This is a great step forward for the aspirational goal of computationally
predicting complex phenotypes, and using the modeling predictions for
improving health, for treating disease, and engineering useful living
organisms," said Tom Skalak, Executive Director of The Paul G. Allen
Frontiers Group.

Levin's lab is interested in applying this method to regenerative medicine
and the ways that cells make decisions about how to form and repair
complex anatomical structures. (Previous results by the team described
machine learning efforts to reverse-engineer the planarian worm's ability
to regenerate its entire body from fragments of a worm.)

"Beyond the current tools of bioinformatics, which handle genomic and
protein data, we want to develop AI platforms to help us understand and
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control large scale patterning, the algorithms that define anatomical
shape, not just the mechanisms guiding individual cell behaviors," Levin
says.

Lobo's lab is applying the method to cancer research to determine what
type of interventions might stop metastasis in its tracks without
damaging other cells.

"Traditional approaches like chemotherapy attack the cells that grow the
most, but leaves cells that are signaling others to grow and that may be
the most important," Lobo says. "We're using machine learning to find
out the communication networks between these cells and hopefully to
discover a treatment that can cause the tumor to collapse."

The results of their tadpole study show how that machine learning can
uncover hidden relationships in complex living systems and identify
specific manipulations that can achieve a therapeutic outcome.

"The machine learning system contributed to the most creative thing that
scientists do: it helped us find a model explaining what's going on in this
complex system," Levin says. "In the future, as data continue to
accumulate, computers are going to be an essential component of the
scientific process, helping us make hypotheses and formulating
predictive, quantitative models of how biological systems work."

  More information: Daniel Lobo et al, Discovering novel phenotypes
with automatically inferred dynamic models: a partial melanocyte
conversion in Xenopus, Scientific Reports (2017). DOI:
10.1038/srep41339
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