Legacy of brilliant young scientist is a major leap in quantum computing

March 7, 2017
Dr Nick Russell was a brilliant young scientist who tragically lost his life in a climbing accident last year. Credit: Emily Darley

Researchers from the University of Bristol and Université Libre de Bruxelles have theoretically shown how to write programs for random circuitry in quantum computers.

The breakthrough, published in the New Journal of Physics, is based on the work of first author, Dr Nick Russell, who tragically lost his life in a climbing accident last year.

"One of the many applications for random quantum circuits is the realisation of a rudimentary version of a quantum computer, known as a "boson sampler". A boson sampler could be among an early class of quantum technologies that prove their intrinsic superiority over classical machines. Such a demonstration would be a landmark in the history of science," said Dr Anthony Laing from the University of Bristol's School of Physics, who supervised Dr Russell's thesis.

The work of Dr Russell and researchers in Bristol and Brussels, has theoretically solved the problem of programming random in quantum computers.

"Most of us understand randomness in terms of the roll of a dice. Programming randomness into any machine might therefore seem like a straightforward task - simply turn any available control knobs to a random setting.

"However, because of the way quantum particles travel through their circuitry, they are affected by many control settings in a certain order. The control knobs must be carefully set according to a specific design, and finding the recipe for randomness in quantum circuitry can be especially tricky.

"With his research, Nick and the teams at Bristol and Brussels have effectively unloaded the quantum dice. By discovering how to program this randomness into circuitry, we are a step closer to creating a boson sampler, and ultimately a computer.

"I'm delighted to see Nick's results published. He was a brilliant scientist. This and his other work will continue to have a significant impact on the field of for many years to come," said Dr Laing.

Explore further: Quantum RAM: Modelling the big questions with the very small

More information: Nicholas J Russell et al. Direct dialling of Haar random unitary matrices, New Journal of Physics (2017). DOI: 10.1088/1367-2630/aa60ed

Related Stories

Quantum RAM: Modelling the big questions with the very small

February 3, 2017

When it comes to studying transportation systems, stock markets and the weather, quantum mechanics is probably the last thing to come to mind. However, scientists at Australia's Griffith University and Singapore's Nanyang ...

The quantum revolution is a step closer

September 11, 2014

A new way to run a quantum algorithm using much simpler methods than previously thought has been discovered by a team of researchers at the University of Bristol. These findings could dramatically bring forward the development ...

Verifying the future of quantum computing

July 30, 2014

Physicists are one step closer to proving the reliability of a quantum computer – a machine which promises to revolutionise the way we trade over the internet and provide new tools to perform powerful simulations.

Recommended for you

Toward mass-producible quantum computers

May 26, 2017

Quantum computers are experimental devices that offer large speedups on some computational problems. One promising approach to building them involves harnessing nanometer-scale atomic defects in diamond materials.

New technology could revolutionize 3-D printing

May 26, 2017

A technology originally developed to smooth out and pattern high-powered laser beams for the National Ignition Facility (NIF) can be used to 3-D print metal objects faster than ever before, according to a new study by Lawrence ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.