Want to eradicate viruses? They made us who we are

March 1, 2017 by Edward Emmott, The Conversation
The HIV virus. Credit: Shutterstock

It is cold and flu season so many of us are currently under the weather with a virus. But what exactly is a virus? And are they even alive?

Outside a , these weird microscopic particles, or virions, only consist of a tiny piece of genetic information (about 10,000 times less than that contained in the human genome) and a protein or lipid (fatty molecule) shell. Whether these particles are living things is the subject of much debate, as they don't meet many of the usual criteria for life.

While there isn't any formal agreement on what defines life, most definitions include the ability to adapt to the environment, to reproduce, to respond to stimuli, and to use energy.

While the particle may fall short of the definition of life depending on the criteria used, for some virologists like myself, thinking of the virion as the "virus" is like calling a sperm or unfertilised egg a "person". Sure, a sperm is an essential step towards creating a person, but few people would argue that a sperm or unfertilised egg should be described as the finished product.

Much like a sperm, virions are produced in the millions. Many will never reach their destination and are lost and degrade in the environment. It is only when the virus binds to and enters a target cell that its cycle of replication can begin.

A virion doesn't even always contain a majority of the molecules a virus can create. For example, the norovirus virion contains just three different types of protein and one type of RNA (a nucleic acid like DNA which uses a different sugar to form its backbone). Infected cells, however, make at least eight different viral proteins and four different viral RNAs.

Nor does the itself usually result in the symptoms of disease. Typically, when you catch a virus, your symptoms come from either infected cells dying, or your immune response to those infected cells.

For these reasons, some virologists consider the infected cell, rather than the virion, to be the virus.

I am virus

While this idea sounds outlandish, from conception to grave, your cells are intricately associated with . Even if you don't have a cold or the flu, you are still part-virus as human DNA plays host to a range of different viruses.

Transplanting pig organs into humans carries a risk of viral infection. Credit: Shutterstock

These are retroviruses, the best-known example of which is HIV. While HIV only entered the human population relatively recently, viruses very much like it have been infecting us and the creatures we evolved from since long before humans even existed.

While HIV infects immune cells, when a retrovirus instead infects the cells that produce eggs or sperm, the viral DNA can be inherited by any offspring. Over millions of years, these viruses have lost their ability to produce infectious particles, but have in some cases found other vital roles, and are now indispensable for human life.

One well-studied example is a protein called Syncytin-1, which is vital for the development of the placenta. This was originally a retroviral protein which entered the monkey population which gave rise to humans around 24m years ago. If we deleted this protein from our DNA, humanity would rapidly go extinct as we could no longer produce a functional placenta.

All these viruses which inserted into our DNA long ago are termed endogenous retroviruses (ERVs). In humans, ERVs have long since lost the ability to produce infectious virions, but this is not the case in all animals. Pig ERVs, for example, can produce infectious particles and are a concern when considering the use of pig organs for transplant, as these are known to be able to infect human cells in the lab.

Blurred lines

If a virus is the infected cell, rather than the virion, you could even think of the viruses that can infect us as more than 99.9% human. This is because they need many of the human proteins or other molecules present in your cells and encoded in your DNA to make more virus.

A human cell is vastly more complex than even the largest virus, and viruses can make use of this to compensate for their own simplicity. Viruses and their host cells share many common needs. They need to be able to produce RNA, protein, lipids and have access to the raw materials to generate these. As a host cell already contains all the needed components to achieve this, a virus can simply provide its own instructions, in the form of the viral genome, and let the cell do most of the work.

It takes many more cellular proteins to make a virus, than it does viral proteins. A virus only needs to provide instructions for the few components the host cell cannot produce. An example of this would be viruses which have a virion with a lipid membrane, such as influenza. This membrane is usually recycled from host cell membranes. The addition of a couple of converts this into the membrane coat of the virion.

This use of host components by viruses also makes it clear why it has been so difficult to develop effective antiviral drugs. Much as with cancer treatment, there is very little to distinguish infected cells from normal human cells, which makes coming up with a drug that will only target extremely challenging. To be effective, you have to target that tiny part of the infected cell that is purely virus, without harming the remainder.

So are viruses alive? It's still not settled, and really depends on what you think a virus is. What does seem clear, however, is that the viruses which infect us can be seen as part human, and we are part virus.

Explore further: Scientists find clue to why Zika, but not its close relatives, causes birth defects

Related Stories

Human genomic pathways to bronchitis virus therapy

November 18, 2015

Viral replication and spread throughout a host organism employs many proteins, but the process is not very well understood. Scientists at A*STAR have led a collaborative study to learn which host factors play a key role in ...

Antiviral protein hampers TBE virus

October 17, 2016

Research at Umeå University in Sweden presents a new discovery: the protein viperin can prohibit tick-borne encephalitis virus (TBEV) from multiplying in the cell. It also limits the amount of functional viruses that can ...

Zika virus infection alters human and viral RNA

October 20, 2016

Researchers at University of California San Diego School of Medicine have discovered that Zika virus infection leads to modifications of both viral and human genetic material. These modifications—chemical tags known as ...

Recommended for you

Why birds don't have teeth

May 23, 2018

Why did birds lose their teeth? Was it so they would be lighter in the air? Or are pointy beaks better for worm-eating than the jagged jaws of dinosaur ancestors?

'Virtual safe space' to help bumblebees

May 22, 2018

The many threats facing bumblebees can be tested using a "virtual safe space" created by scientists at the University of Exeter. Bumble-BEEHAVE provides a computer simulation of how colonies will develop and react to multiple ...

Fluid dynamics may play key role in evolution of cooperation

May 22, 2018

Believe it or not—it's in our nature to cooperate with one another, even when cheating may be more profitable. Social cooperation is common in every scale of life, from the simplest bacterial films and multicellular tissues ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.