The energetic cost of swimming at high speed when startled may be a factor in strandings of dolphins and whales

March 16, 2017 by Kathryn Knight, University of California - Santa Cruz
Dolphins and other cetaceans have to balance their energy demands during dives with a limited oxygen reserve. Credit: T. M. Williams

Dolphins swimming at top speed use more than twice the amount of energy per fin beat than dolphins swimming at a more relaxed pace, according to a study by scientists at UC Santa Cruz. The researchers also found that startled beaked whales fleeing human noises use 30.5 percent more energy during the flight, suggesting that the high cost of escape could contribute to recent dolphin and whale strandings.

Diving marine mammals must balance speed and the duration of breath-hold with the need to conserve limited oxygen reserves, leaving them vulnerable when they try to escape from perceived threats. "Amazingly, there has been only a handful of studies that have actually measured the energetic cost of a dive for or whales," said Terrie Williams, professor of ecology and evolutionary biology at UC Santa Cruz.

Williams is fascinated by how marine mammals balance their energy demands with their finite oxygen supply. Explaining that fleeing dolphins beat their fins continually when full-out, while adopting a more leisurely burst-and-glide style during a routine dive, Williams said she wondered just how much energy each swimming style uses and how much energy a startled animal might use when evading peril.

In a paper published March 15 in the Journal of Experimental Biology, Williams and her colleagues reported the energetic costs of different swimming strokes for trained dolphins and other cetaceans. Using that data and previously reported observations of wild Cuvier's fleeing from low-frequency sonar, they were able to calculate how much more energy the beaked whales expended in their efforts to escape the noise.

The energetic cost of swimming at high speed when startled may be a factor in strandings of dolphins and whales
Williams and her colleagues trained bottlenose dolphins to participate in tests that would allow the scientists to measure the metabolic costs of different swimming styles. Credit: University of California - Santa Cruz

Working with a team of expert trainers, Williams and her colleagues spent over 6 months training six that had previously worked with the U.S. Navy to participate in swimming tests that would allow the scientists to measure the metabolic costs of the different swimming styles. In the first test, the dolphins learned to swim at their most comfortable speed while pushing against a force plate in the wall of the pool as the researchers filmed the number of fin beats. The second test required the animals to dive down 10 meters wearing a fin-beat tracker and swim through a series of hoops before returning to the surface.

Williams was able to take advantage of the animals' marine lifestyle to directly measure the metabolic cost of each dive by training the animals to surface in an air dome where she could record how much oxygen the animals inhaled as they recharged the oxygen stores that they had consumed while swimming. When Williams included killer whales in the metabolic measurements, she had to build an outsized 1.7-square-meter respiration dome to accommodate the larger animals.

After months of patience, the team was eventually able to calculate that bottlenose dolphins consume 3.3 Joules per kilogram per stroke during routine swimming, but the energy consumption almost doubles to 6.4 J/(kg stroke) when swimming their hardest. When the team added the ' fin-beat cost to a plot including the swimming costs of bottlenose dolphins, harbor porpoises and beluga whales, they finally had a tool that they could use to estimate the diving costs of any cetacean.

But what are the conservation implications of the increased cost of each fin beat when whales and dolphins need to avoid danger? Loud man-made noise pollution is thought to be responsible for some mass strandings, so Williams contacted Brandon Southall, a research associate at UCSC's Institute of Marine Sciences, who had recorded how a Cuvier's beaked whale reacted to 20 minutes of loud sonar. With the recording showing that the whale's fin-beat pattern increased significantly, from about 13.6 to 16.9 strokes per minute, she calculated that the startled animals would use 30.5 percent more energy as their metabolic rate rocketed to power the fleeing animals' fin beats. And the whale did not recover swiftly, continuing to use the most costly fin beats for almost two hours after the noise stopped.

"Not all strokes are the same in terms of energy expenditure for swimming dolphins, and this has enormous implications for the cost of flight from aversive stimuli by wild cetaceans," Williams said. "In view of the number of cetacean mass strandings across the globe and the increase in human presence in the oceans, such data are critical. The animals in our care provided that opportunity."

Explore further: Beaked whales B-stroke for long dives

More information: Kathryn Knight. High-speed dolphins burn double calories, The Journal of Experimental Biology (2017). DOI: 10.1242/jeb.158683

Related Stories

Beaked whales B-stroke for long dives

May 12, 2015

Foraging animals tread a narrow metabolic tightrope, rationing the energy they expend in the pursuit of food to make the most of a catch. And marine mammals that dive on a single breath of air have to be even more frugal ...

First underwater video footage of the True's beaked whale

March 7, 2017

The True´s beaked whale is a deep-diving mammal so rarely seen that it often defies recognition at sea by researchers. As a result, we have little data about its distribution, abundance and calving rate - information essential ...

Heart arrhythmias detected in deep-diving marine mammals

January 16, 2015

A new study of dolphins and seals shows that despite their remarkable adaptations to aquatic life, exercising while holding their breath remains a physiological challenge for marine mammals. The study, published January 15 ...

What causes whale mass strandings?

February 16, 2017

Around 600 pilot whales recently became stranded on a New Zealand beach, around 400 of which died before volunteers could refloat them back into the sea. Sadly, this kind of mass whale stranding has occurred since human records ...

Dolphin pod dies trapped in ice off Canadian coast

March 17, 2014

Some 30 white-beaked dolphins have died after being trapped in ice off the coast of Canada's easternmost Newfoundland province, and three remaining alive are not faring well, officials said Monday.

Dolphins use extra energy to communicate in noisy waters

April 23, 2015

Dolphins that raise their voices to be heard in noisy environments expend extra energy in doing so, according to new research that for the first time measures the biological costs to marine mammals of trying to communicate ...

Recommended for you

Looking for LUCA, the last universal common ancestor

December 18, 2018

Around 4 billion years ago there lived a microbe called LUCA: the Last Universal Common Ancestor. There is evidence that it could have lived a somewhat 'alien' lifestyle, hidden away deep underground in iron-sulfur rich hydrothermal ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.