ALMA's ability to see a 'cosmic hole' confirmed

March 17, 2017
The image shows the measurement of the SZ effect in the galaxy cluster RX J1347.5-1145 taken with ALMA (blue). The background image was taken by the Hubble Space Telescope. A “hole” caused by the SZ effect is seen in the ALMA observations. Credit: ALMA (ESO/NAOJ/NRAO), Kitayama et al., NASA/ESA Hubble Space Telescope

Researchers using the Atacama Large Millimeter/submillimeter Array (ALMA) successfully imaged a radio "hole" around a galaxy cluster 4.8 billion light-years away. This is the highest resolution image ever taken of such a hole caused by the Sunyaev-Zel'dovich effect (SZ effect). The image proves ALMA's high capability to investigate the distribution and temperature of gas around galaxy clusters through the SZ effect.

A research team led by Tetsu Kitayama, Toho University, Japan, and Eiichiro Komatsu, Max Planck Institute for Astrophysics, Germany, used ALMA to investigate the hot gas in a galaxy cluster. The hot gas is a key component to understand the nature and evolution of galaxy clusters. Even though the hot gas does not emit radio waves itself, which would be detectable with ALMA, the gas scatters the radio waves of the Cosmic Microwave Background and makes a "hole" around the galaxy cluster. This is called the Sunyaev-Zel'dovich effect (Note).

The team observed the galaxy cluster RX J1347.5-1145 located 4.8 billion light-years away. This galaxy cluster is well known among astronomers for its strong SZ effect and has been observed many times with radio telescopes. These observations revealed an uneven distribution of the hot gas in this galaxy cluster, which was not seen in X-ray observations. Astronomers therefore needed higher resolution observations; these however, were difficult to obtain with high-resolution radio interferometers as the hot gas in is relatively smooth and widely-distributed.

ALMA utilized the Atacama Compact Array to overcome this difficulty, which provides a wider field of view with its smaller diameter antennas and the close-packed antenna configuration. By using the data from the Morita Array, astronomers can precisely measure the radio waves from objects extending over a large angle on the sky. With ALMA, the team thus obtained an SZ effect image of RX J1347.5-1145, with twice the resolution and ten times better sensitivity than previous observations. This is the first image of the SZ effect with ALMA.

"The new ALMA observation not only confirms the previous observations, but also provides an image with the highest resolution and highest sensitivity, which will open up a new era of SZ science," Eiichiro Komatsu points out. "The mismatch between radio and X-ray observations leads us to the conclusion that this cluster is undergoing a violent merger, and we think that there is a clump of gas which is incredibly hot."

The Cosmic Microwave Background (CMB) is the remnant radiation from the Big Bang and its radio waves reach us from every direction. When CMB radio waves pass through the hot gas in a galaxy cluster, the radio waves interact with high-energy electrons in the hot gas and gain energy. As a result, the radiation is shifted from to higher energy. Observing from the Earth, the CMB in the original energy range has less intensity near the galaxy cluster. This is called the "Sunyaev-Zel'dovich ," first proposed by Rashid Sunyaev (currently director at the Max Planck Institute for Astrophysics) and Yakov Zel'dovich in 1970.

Explore further: Hubble cooperates on galaxy cluster and cosmic background

More information: Tetsu Kitayama et al. The Sunyaev–Zel'dovich effect at 5″: RX J1347.5−1145 imaged by ALMA, Publications of the Astronomical Society of Japan (2016). DOI: 10.1093/pasj/psw082 , https://arxiv.org/abs/1607.08833

Related Stories

Hubble cooperates on galaxy cluster and cosmic background

February 27, 2017

The events surrounding the Big Bang were so cataclysmic that they left an indelible imprint on the fabric of the cosmos. We can detect these scars today by observing the oldest light in the universe. As it was created nearly ...

The evolution of massive galaxy clusters

January 20, 2017

Galaxy clusters have long been recognized as important laboratories for the study of galaxy formation and evolution. The advent of the new generation of millimeter and submillimeter wave survey telescopes, like the South ...

A violent, complex scene of colliding galaxy clusters

June 3, 2014

Astronomers using the Karl G. Jansky Very Large Array (VLA) and the Chandra X-Ray Observatory have produced a spectacular image revealing new details of violent collisions involving at least four clusters of galaxies. Combined ...

Astrophysicists probe theory of black-hole accretion

June 22, 2016

Utilizing the Atacama Large Millimeter/submillimeter Array (ALMA), one of the most powerful telescopes in the world, U.S. Naval Research Laboratory (NRL) astrophysicist Dr. Tracy Clarke and an international team of researchers ...

Colliding galaxy clusters

December 5, 2016

Galaxy clusters contain a few to thousands of galaxies and are the largest bound structures in the universe. Most galaxies are members of a cluster. Our Milky Way, for example, is a member of the "Local Group," a set of about ...

Recommended for you

Astronomers identify new asynchronous short period polar

October 16, 2017

(Phys.org)—An international team of astronomers led by Gagik H. Tovmassian of the National Autonomous University of Mexico (UNAM) has uncovered new details into the nature of a cataclysmic variable known as IGR J19552+0044. ...

The remarkable jet of the quasar 4C+19.44

October 16, 2017

Quasars are galaxies with massive black holes at their cores. So much energy is being radiated from near the nucleus of a quasar that it is much brighter than the rest of the entire galaxy. Much of that radiation is at radio ...

On the generation of solar spicules and Alfvenic waves

October 13, 2017

Combining computer observations and simulations, a new model shows that the presence of neutrals in the gas facilitates the magnetic fields to penetrate through the surface of the Sun producing the spicules. In this study, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.