Accounting for extreme rainfall

March 7, 2017
Image: Wikipedia.

A University of Connecticut climate scientist confirms that more intense and more frequent severe rainstorms will likely continue as temperatures rise due to global warming, despite some observations that seem to suggest otherwise.

In a research paper appearing this week in Nature Climate Change, UConn civil and environmental engineering professor Guiling Wang explains that data showing the intensity of severe rainstorms declining after temperatures reach a certain threshold are merely a reflection of variability. It is not proof that there is a fixed upper limit for future increases in severe rains, after which they would begin to drop off.

"We hope this information puts things in better perspective and clarifies the confusion around this issue," says Wang, who led an international team of climate experts in conducting the study. "We also hope this will lead to a more accurate way of analyzing and describing ."

Climate scientists and policymakers closely monitor severe and prolonged rainstorms as they can have a devastating impact on local environments and economies. These damaging storms can cause catastrophic flooding; overwhelm sewage treatment plants; increase the risk of waterborne disease; and wipe out valuable crops.

Current climate models show most of the world will experience more intense and more frequent severe rainstorms for the remainder of the 21st century, due to hotter temperatures caused by .

But whether this increase in extreme precipitation will continue beyond the end of the century, and how it will be sustained, is less clear.

Meteorological observations from weather stations around the globe show the intensity of severe rainstorms relative to temperature is like a curve—steadily going up as low to medium surface temperatures increase, peaking when temperatures hit a certain high point, then dropping off as temperatures continue rising.

Those observations raise the prospect that damaging rainstorms could eventually ease once surface temperatures reach a certain threshold.

However, Wang says the peaks seen in the observational data and climate models simply reflect the natural variability of the climate. As the Earth warms, her team found, the entire curve representing the relationship between extreme precipitation and rising temperatures is moving to the right. This is because the threshold temperature at which rain intensity peaks also goes up as temperature rises. Therefore, extreme rainfall will continue to increase, she says.

The relationship between precipitation and temperature is founded in science. Simply put, warmer air holds more moisture. Scientists can even tell you how much. A widely used theorem in climate science called the Clausius-Clapeyron equation dictates that for every degree the temperature goes up, there is an approximately 7 percent increase in the amount of moisture the atmosphere can hold. The intensity of extreme precipitation, which is proportional to atmospheric moisture, also increases at a scaling rate of approximately 7 percent, in the absence of moisture limitations.

The problem is that when scientists ran computer models predicting the likelihood of extreme precipitation in the future, and compared those results with both present day observations and the temperature scaling dictated by the so-called "C-C equation," the numbers were off. In many cases, the increase in extreme precipitation relative to surface temperature over land was closer to 2 to 5 percent, rather than 7 percent. In their analysis, Wang's team discovered that average local surface temperatures increase much faster than the threshold temperatures for extreme precipitation, and attributed the lower scaling rate to the fact that earlier studies compared extreme precipitation with average local temperatures rather than the temperature at the time the rainstorms occurred.

"There are a lot of studies where people are trying to determine why the scaling rate is lower than 7 percent," says Wang. "Our study suggests that this is a wrong question to ask. If you want to relate rain intensity to temperature using the C-C relationship as a reference, you have to relate to the temperature at which the rain event occurs, not the mean temperature, which is the long term average."

Kevin Trenberth, an expert on global warming and the lead author of several reports prepared by the Intergovernmental Panel on Climate Change, joined Wang in the current study. Trenberth is currently a Distinguished Senior Scientist in the Climate Analysis Section at the National Center for Atmospheric Research. He shared the 2007 Nobel Peace Prize with former Vice President Al Gore as a member of the IPCC. Trenberth explains the findings this way:

"In general, increases with higher temperatures because the air can hold more moisture—although that depends on moisture availability. But beyond a certain point, it is the other way round: the temperature responds to the precipitation, or more strictly speaking, the conditions leading to the precipitation, [such as extensive cloud cover or surface moisture]. The most obvious example of this is in a drought where there is no precipitation. Another example is in cloudy, stormy conditions, when it is wet and cool. By relating the changes in precipitation to the temperature where the relationship reverses - instead of the mean temperature as in previous studies—we can make sense of the differences and the changes. Moreover, it means there is no limit to the changes that can occur, as otherwise might be suspected if there were a fixed relationship."

Explore further: A hard rain to fall in Australia with climate change

More information: Guiling Wang et al. The peak structure and future changes of the relationships between extreme precipitation and temperature, Nature Climate Change (2017). DOI: 10.1038/nclimate3239

Related Stories

Statistically linking extreme precipitation to global warming

September 24, 2013

Extreme rainfall can have serious effects on societies and ecosystems. Increases in extreme precipitation events are predicted to occur as Earth's climate warms, in part because warmer air has greater capacity to hold moisture, ...

Colorado River flows will keep shrinking as climate warms

February 21, 2017

Warming in the 21st century reduced Colorado River flows by at least 0.5 million acre-feet, about the amount of water used by 2 million people for one year, according to new research from the University of Arizona and Colorado ...

Extreme downpours could increase fivefold across parts of the US

December 5, 2016

At century's end, the number of summertime storms that produce extreme downpours could increase by more than 400 percent across parts of the United States—including sections of the Gulf Coast, Atlantic Coast, and the Southwest—according ...

Ocean warming leads to stronger precipitation extremes

July 13, 2015

Due to climate change, not only atmospheric, but also oceanic, temperatures are rising. A study published in the international journal Nature Geoscience led by scientists at the GEOMAR Helmholtz Centre for Ocean Research ...

Climate change: When it rains it (really) pours

August 7, 2008

Climate models have long predicted that global warming will increase the intensity of extreme precipitation events. A new study conducted at the University of Miami and the University of Reading (U.K.) provides the first ...

Recommended for you

Heavy oils and petroleum coke raising vanadium emissions

December 15, 2017

Human emissions of the potentially harmful trace metal vanadium into Earth's atmosphere have spiked sharply since the start of the 21st century due in large part to industry's growing use of heavy oils, tar sands, bitumen ...

Climate change made Harvey rainfall 15 percent more intense

December 14, 2017

A team of scientists from World Weather Attribution, including researchers from Rice University and other institutions in the United States and Europe, have found that human-caused climate change made the record rainfall ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.