A sustained and controllable insulin release system

February 27, 2017
A concept for a sustained and controllable insulin release system by SPRA-PPRX technology from Kumamoto University, Japan. Credit: Dr. Hidetoshi Arima

Researchers from Kumamoto University, Japan have developed an insulin release system with sustained and controllable delivery. The system combines two original technologies, SPRA and PPRX, which provide complimentary benefits for insulin delivery.

The prevalence of diabetes has grown around the world over the past three decades. In 2016, the World Health Organization estimated that 422 million people had the disease as the rate of obesity also increased. Aside from proper diet and exercise, the best treatment for diabetes is the delivery of insulin into the body that is both controllable and sustainable over time to manage . Working toward the development of a better system, a research group from Kumamoto University in Japan has been experimenting with polyethylene glycol (PEG) modification (PEGylation) of protein drugs through a host-guest interaction between cyclodextrin (CyD) and adamantane to improve the stability and lifetime of insulin, calling the results of their work "SPRA technology". Their current research focuses on combining SPRA technology with another development of their own that allows for better control of insulin release, "polypseudorotaxane (PPRX) technology". Their goal in combining the two technologies was to develop a sustained and controllable insulin release system.

Using mono- or multi-SPRA-insulin solutions and alpha- or gamma-cylodextrin (CyD), the researchers developed four types of SPRA-insulin/CyD PPRXs, mono-SPRA-insulin/alpha-CyD, mono-SPRA-insulin/gamma-CyD, multi-SPRA-insulin/alpha-CyD, and multi-SPRA-insulin/gamma-CyD PPRX. Alpha-CyDs were found to form PPRXs with a single PEG molecule of SPRA-insulin, whereas gamma-CyD formed them with two molecules. The multi-SPRA-insulin was expected to remain in the blood supply for a relatively long period of time, and the use of different concentrations of CyDs allowed researchers to control insulin release through the CyD and PEG equilibrium reaction.

The hypoglycemic effects of the insulin type with the highest CyD safety profile (multi/gamma) was then assessed in vivo. Two gamma-CyD concentrations, 116 mg/ml and 232 mg/ml, of multi-SPRA-Insulin/gamma-CyD PPRX were tested against a control of multi-SPRA-insulin. "We found that 232 mg/ml gamma-CyD PPRX provided for a longer blood glucose reduction time than the 116 mg/ml PPRX and the control. This is quite important since it shows that both sustained and controlled insulin release can be achieved, which is necessary for the treatment of diabetes," said lead researcher Dr. Hidetoshi Arima. "Furthermore, a blood chemistry safety analysis of creatinine, blood urea nitrogen, aspartate aminotransferase, and alanine aminotransferase were found to be unchanged by the . Our SPRA-PPRX injections appear to be a safe and reliable system."

A limitation of this study is the low number of experimental subjects, only 3 rats per group. Also, it was unclear whether or not a diabetic animal model was used in the experiments.

In future work, the researchers plan to combine other forms of insulin with gamma-CyD PPRX with the hope of further improving diabetes treatment. The current findings be found online in the journal Carbohydrate Polymers.

Explore further: Toward a 'smart' patch that automatically delivers insulin when needed

More information: Tatsunori Hirotsu et al, Cyclodextrin-based sustained and controllable release system of insulin utilizing the combination system of self-assembly PEGylation and polypseudorotaxane formation, Carbohydrate Polymers (2017). DOI: 10.1016/j.carbpol.2017.01.074

Related Stories

Lowest glucose variability for insulin + GLP-1 RA in T2DM

December 20, 2016

(HealthDay)—For patients with type 2 diabetes, the lowest glucose variability (GV) and hypoglycemia is seen for patients using basal insulin + glucagon-like peptide 1 receptor agonist (GLP-1 RA) (BGLP), according to a study ...

Research links fatty liver disease to type 2 diabetes

October 18, 2016

Insulin resistance in the liver is a major factor in the development of type 2 diabetes, and it is almost always associated with too much fat in the liver—a condition called non-alcoholic fatty liver disease (NAFLD). The ...

Study reveals protein to target in type 2 diabetes

September 1, 2016

When the body's cells don't respond normally to insulin—a condition known as insulin resistance—blood glucose levels can increase, resulting in type 2 diabetes. Researchers have long known that insulin resistance is linked ...

Study bodes well for low-carb eaters

November 1, 2016

Three low-carb meals within 24 hours lowers post-meal insulin resistance by more than 30 percent, but high-carb meals sustain insulin resistance, a condition that leads to high blood pressure, prediabetes and diabetes, according ...

Recommended for you

Life's building blocks observed in spacelike environment

December 12, 2017

Where do the molecules required for life originate? It may be that small organic molecules first appeared on earth and were later combined into larger molecules, such as proteins and carbohydrates. But a second possibility ...

Teaching antibiotics to be more effective killers

December 12, 2017

Research from the University of Illinois at Chicago suggests bond duration, not bond tightness, may be the most important differentiator between antibiotics that kill bacteria and antibiotics that only stop bacterial growth.

Hot vibrating gases under the electron spotlight

December 12, 2017

Natural gas is used in refineries as the basis for products like acetylene. The efficiency of gaseous reactions depends on the dynamics of the molecules—their rotation, vibration and translation (directional movement). ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.