The origin of stem cells

February 8, 2017
Ackerschmalwand. Credit: Thomas Kunz

Freiburg plant biologist Prof. Dr. Thomas Laux and his research group have published an article in the journal Developmental Cell presenting initial findings on how shoot stem cells in plants form during embryogenesis, the process of embryonic development. Pluripotent stem cells can develop into any type of cell in an organism. In contrast to animals, plants can form completely new organs from their stem cells throughout their lives, which in the case of several species of trees may span a thousand years or more. Stem cell research promises to solve key problems in medicine and plant breeding. However, whereas the function of stem cells for the regeneration of tissue or for growth has been studied in detail, much less is known so far about how stem cells form in the course of embryonic development.

Several years ago, Laux and his team already discovered the transcription factor responsible for the continuous replacement of shoot in the model plant Arabidopsis, commonly known as thale cress. Called WUSCHEL, this protein is already present in the embryo when the stem cells form. "Much to our surprise, our PhD student Zhongjuan Zhang made the key observation that it is not WUSCHEL but the related transcription factor WOX2 that is responsible for the development of the stem cells," says Laux. All that was previously known about the protein WOX2 was that it controls earlier steps in the pattern formation of the embryo, the phase in which the embryo's cells arrange themselves in a particular structure. Zhang discovered that WOX2 prevents the cells in the region of the embryo in which the stem cells form from differentiating into specialized cell types and thus from losing their unlimited potential for development.

This means that plants follow similar strategies in the process of stem cell development as found in animals. In the case of Arabidopsis, WOX2 regulates the balance between the two plant hormones cytokinin and auxin by allowing relatively large amounts of the former and relatively small amounts of the latter to collect in the of the stem cells. Plant researchers have already been using this mechanism for several decades to regenerate a shoot from a root or a leaf. This method, originally found in tissue cultures, therefore ultimately reflects the same mechanism that evolution already found much earlier to develop stem cells during embryogenesis.

Thomas Laux is head of a laboratory at the Institute of Biology III and a member of the University of Freiburg's Cluster of Excellence BIOSS Centre for Biological Signalling Studies.

Explore further: Biologists demonstrate how signals in plant roots determine the activity of stem cells

More information: Zhongjuan Zhang et al, A Molecular Framework for the Embryonic Initiation of Shoot Meristem Stem Cells, Developmental Cell (2017). DOI: 10.1016/j.devcel.2017.01.002

Related Stories

Biologists find how plants reconstitute stem cells

May 19, 2016

Stem cells are typically thought to have the intrinsic ability to generate or replace specialized cells. However, a team of biologists at NYU showed that regenerating plants can naturally reconstitute their stem cells from ...

The developmental on-switch

August 19, 2013

German researchers have demonstrated for the first time why the molecular cocktail responsible for generating stem cells works. Sox2 and Oct4 are proteins whose effect on cells resembles that of an eraser: They remove all ...

Controlling gene activity in human development

December 6, 2016

Researchers at the Babraham Institute have revealed a new understanding of the molecular switches that control gene activity in human embryonic stem cells. This insight provides new avenues for improving the efficiency of ...

Neural stem cells control their own fate

August 18, 2016

To date, it has been assumed that the differentiation of stem cells depends on the environment they are embedded in. A research group at the University of Basel now describes for the first time a mechanism by which hippocampal ...

Recommended for you

The high cost of communication among social bees

May 26, 2017

(Phys.org)—Eusocial insects are predominantly dependent on chemosensory communication to coordinate social organization and define group membership. As the social complexity of a species increases, individual members require ...

Knowledge gap on the origin of sex

May 26, 2017

There are significant gaps in our knowledge on the evolution of sex, according to a research review on sex chromosomes from Lund University in Sweden. Even after more than a century of study, researchers do not know enough ...

Why communication is vital—even among plants and funghi

May 26, 2017

Plant scientists at the University of Cambridge have found a plant protein indispensable for communication early in the formation of symbiosis - the mutually beneficial relationship between plants and fungi. Symbiosis significantly ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.