

Building privacy right into software code

February 21 2017, by Jean Yang

Credit: AI-generated image (disclaimer)

When I was 15, my parents did not allow me to use AOL Instant
Messenger. All of my friends used it, so I had to find a way around this
rule. I would be found out if I installed the software on my computer, so
I used the web browser version instead. Savvy enough to delete my
internet history every time, I thought my chatting was secret.

Then one day my mother confronted me with all the times I had gone on

1/6

https://sciencex.com/help/ai-disclaimer/
https://www.lifewire.com/how-to-sign-in-aim-express-1949378

Instant Messenger in the past week. Whenever I visited the site, it had
left a trail of cookies behind. Intended to make my user experience more
convenient, cookies saved my login information for repeat visits.
Unfortunately, the cookies made my life less convenient: My mother
knew how to inspect them to determine when I had been illicitly instant
messaging.

Since then, I have been very interested in protecting user privacy. I
studied computer science in college and ended up pursuing a career in
the field. I became fascinated with programming languages, the
construction materials for the information age. Languages shape how
programmers think about software, and how they construct it, by making
certain tasks easier and others harder. For instance, some languages
allow rapid website prototyping, but don't handle large amounts of
traffic very well.

Regarding my main interest, I discovered that many of today's most
common languages make it difficult for programmers to protect users'
privacy and security. It's bad enough that this state of affairs means
programmers have lots of opportunities to make privacy-violating errors.
Even worse, it means we users have trouble understanding what
computer programs are doing with our information – even as we
increasingly rely on them in our daily lives.

A history of insecurity

As part of the first generation who came of age on the internet, I
enjoyed the benefits of participating in digital life, like instant
messaging my friends when I was supposed to be doing homework. I also
knew there was the potential for unintended information leaks.

A then-crush once told me that he took advantage of a fleeting Facebook
opportunity to discover that I was among his top five stalkers. For a brief

2/6

http://computer.howstuffworks.com/internet/basics/question82.htm
https://phys.org/tags/privacy/
https://phys.org/tags/information/
https://www.technologyreview.com/s/536356/toolkits-for-the-mind/
https://www.technologyreview.com/s/536356/toolkits-for-the-mind/
https://doi.org/10.1177/1461444806059871

period of time, when a user typed "." into the search bar, the
autocompleted searches were the users who most searched for them. I
was mortified, and avoided even casual browsing on Facebook for a
while.

This small social crisis was the result of a programming problem, a
combination of both human programmer error and a shortcoming of the
language and environment in which that human worked. And we can't
blame the programmer, because the languages Facebook uses were not
built with modern security and privacy in mind. They need the
programmer to manage everything by hand.

Spreading protections across the program

As those older languages developed into today's programming
environments, security and privacy remained as add-ons, rather than
built-in automatic functions. Though programmers try to keep
instructions for different functions separate, code dedicated to enforcing
privacy and security concerns gets mixed in with other code, and spread
all throughout the software.

The decentralized nature of information leaks is what allowed my
mother to catch me messaging. The web browser I used stored evidence
of my secret chatting in more than one place – in both the history of
what sites I visited and in the cookie trail I left behind. Clearing only one
of them left me vulnerable to my mother's scrutiny.

If the program had been built in such a way that all evidence of my
activity was handled together, it could have known that when I deleted
the history, I wanted the cookies deleted too. But it wasn't, it didn't and I
got caught.

3/6

http://gawker.com/390004/whos-stalking-you-on-facebook
https://phys.org/tags/web+browser/

Making programmers do the work

The problem gets even more difficult in modern online systems.
Consider what happens when I share my location – let's say Disney
World – on Facebook with friends who are nearby. On Facebook, this
location will be displayed on my "timeline." But it will also be used for
other purposes: Visitors to Disney World's Facebook page can see which
of their friends has also been to the amusement park. I can tell Facebook
to limit who can see that information about me, so people I don't know
can't go to Disney World's page and see "Jean Yang checked in 1 hour
ago."

It is the programmer's job to enforce these privacy restrictions. Because
privacy-related code is scattered throughout all the programs Facebook
uses to run its systems, the programmer must be vigilant everywhere. To
make sure nobody finds out where I am unless I want them to, the
programmer must tell the system to check my privacy settings
everywhere it uses my location value, directly or indirectly.

Every time a programmer writes instructions to refer to my location –
when displaying my profile, the Disney World page, the results of
queries such as "friends at Disney World" and countless other places –
she has to remember to include instructions to check my privacy settings
and act accordingly.

This results in a tangle of code connecting the rules and their
implementation. It is easy for programmers to make mistakes, and
difficult for anybody else to check that the code is doing what it's
supposed to do.

Shifting the burden to computers

4/6

http://www.techlicious.com/tip/complete-guide-to-facebook-privacy-settings/
http://www.techlicious.com/tip/complete-guide-to-facebook-privacy-settings/

The best way to avoid these problems is to take the task of privacy
protection away from humans and entrust it to the computers
themselves. We can – and should – develop programming models that
allow us to more easily incorporate security and privacy into software.
Prior research in what is called "language-based information flow" looks
at how to automatically check programs to ensure that sloppy
programming is not inadvertently violating privacy or other data-
protection rules.

Even with tools that can check programs, however, the programmer
needs to do the heavy lifting of writing programs that do not leak
information. This still involves writing those labor-intensive and error-
prone privacy checks throughout the program. My work on a new
programming model called "policy-agnostic programming" goes one step
farther, making sloppy programming impossible. In these systems,
programmers attach security and privacy restrictions directly to every
data value.

For instance, they could label location as information requiring
protection. The program itself would understand that my "Disney
World" location should be shown only to my close friends. They could
see that not only on my own page, but on Disney World's page.

But people I don't know would be shown a less specific value in both
places. Perhaps friends of my friends might see "away from home," and
total strangers could only learn that I was "in the United States." Looking
at my page, they wouldn't be able to tell exactly where I am. And if they
went to the Disney World page, I wouldn't appear there either.

With this type of structure, the humans need no longer write code to
repeatedly check which information should be shared; the computer
system handles that automatically. That means one less thing for
programmers to think about. It also helps users feel more confident that

5/6

https://www.cs.cornell.edu/andru/papers/jsac/sm-jsac03.pdf
http://projects.csail.mit.edu/jeeves/
https://phys.org/tags/programmers/

some element of a complicated piece of software – much less a human
error – won't violate their personal privacy settings.

With software programs handling our driving, shopping and even
choosing potential dates, we have much bigger problems than our
mothers seeing our internet cookies. If our computers can protect our
privacy, that would be a huge improvement to our rapidly changing
world.

This article was originally published on The Conversation. Read the
original article.

Provided by The Conversation

Citation: Building privacy right into software code (2017, February 21) retrieved 9 April 2024
from https://phys.org/news/2017-02-privacy-software-code.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

Powered by TCPDF (www.tcpdf.org)

6/6

https://phys.org/tags/privacy+settings/
http://www.lifehacker.co.uk/2015/02/16/tinderbox-bot-intelligently-swipes-tinder-matches-can-even-start-conversation
http://theconversation.com
https://theconversation.com/building-privacy-right-into-software-code-67623
https://phys.org/news/2017-02-privacy-software-code.html
http://www.tcpdf.org

