NASA wind tunnel tests X-plane design for a quieter supersonic jet

February 27, 2017, Lockheed Martin
Mechanical technician Dan Pitts prepares the model for wind tunnel testing. Credit: NASA

Supersonic passenger airplanes are another step closer to reality as NASA and Lockheed Martin begin the first high-speed wind tunnel tests for the Quiet Supersonic Technology (QueSST) X-plane preliminary design at NASA's Glenn Research Center in Cleveland.

The agency is testing a nine percent scale model of Lockheed Martin's X-plane design in Glenn's 8' x 6' Supersonic Wind Tunnel. During the next eight weeks, engineers will expose the model to wind speeds ranging from approximately 150 to 950 mph (Mach 0.3 to Mach 1.6) to understand the aerodynamics of the X-plane design as well as aspects of the propulsion system. NASA expects the QueSST X-plane to pave the way for over land in the not too distant future.

"We'll be measuring the lift, drag and side forces on the model at different angles to verify that it performs as expected," said aerospace engineer Ray Castner, who leads propulsion testing for NASA's QueSST effort. "We also want make sure the air flows smoothly into the engine under all operating conditions."

The Glenn is uniquely suited for the test because of its size and ability to create a wide range of wind speeds.

"We need to see how the design performs from just after takeoff, up to cruising at , back to the start of the landing approach," said David Stark, the facility manager. "The 8' x 6' supersonic wind tunnel allows us to test that sweet spot range of speeds all in one wind tunnel."

Recent research has shown it is possible for a supersonic airplane to be shaped in such a way that the shock waves it forms when flying faster than the speed of sound can generate a sound at ground level so quiet it will hardly will be noticed by the public, if at all.

"Our unique aircraft design is shaped to separate the shocks and expansions associated with supersonic , dramatically reducing the aircraft's loudness," said Peter Iosifidis, QueSST program manager at Lockheed Martin Skunk Works. "Our design reduces the airplane's noise signature to more of a 'heartbeat' instead of the traditional sonic boom that's associated with current supersonic aircraft in flight today."

According to Dave Richwine, NASA's QueSST preliminary design project manager, "This test is an important step along the path to the development of an X-plane that will be a key capability for the collection of community response data required to change the rules for supersonic overland flight."

NASA awarded Lockheed Martin a contract in February 2016 for the preliminary design of a supersonic X-plane flight demonstrator. This design phase has matured the details of the aircraft shape, performance and flight systems. Wind tunnel testing and analysis is expected to continue until mid-2017. Assuming funding is approved, the agency expects to compete and award another contract for the final design, fabrication, and testing of the low-boom flight demonstration aircraft.

The QueSST design is one of a series of X-planes envisioned in NASA's New Aviation Horizons (NAH) initiative, which aims to reduce fuel use, emissions and noise through innovations in aircraft design that depart from the conventional tube-and-wing aircraft shape. The and build phases for the NAH aircraft will be staggered over several years with the low boom flight demonstrator starting its flight campaign around 2020, with other NAH X-planes following in subsequent years, depending on funding.

Explore further: NASA begins work to build a quieter supersonic passenger jet

More information: For more information, see lockheedmartin.com/QueSST

Related Stories

NASA begins work to build a quieter supersonic passenger jet

March 1, 2016

The return of supersonic passenger air travel is one step closer to reality with NASA's award of a contract for the preliminary design of a "low boom" flight demonstration aircraft. This is the first in a series of 'X-planes' ...

Low-boom supersonic aircraft model points to fast future

October 18, 2012

(Phys.org)—If human beings are ever to fly faster than the speed of sound from one side of the country to another, we first have to figure out how to reduce the level of sonic boom generated by supersonic flight.

NASA moves to begin historic new era of X-plane research

April 25, 2016

History is about to repeat itself. There have been periods of time during the past seven decades – some busier than others – when the nation's best minds in aviation designed, built and flew a series of experimental airplanes ...

Image: Breaking boundaries in new engine designs

January 10, 2017

In an effort to improve fuel efficiency, NASA and the aircraft industry are rethinking aircraft design. Inside the 8' x 6' wind tunnel at NASA Glenn, engineers recently tested a fan and inlet design, commonly called a propulsor, ...

Recommended for you

Magnetic fields may be the key to black hole activity

October 17, 2018

Collimated jets provide astronomers with some of the most powerful evidence that a supermassive black hole lurks in the heart of most galaxies. Some of these black holes appear to be active, gobbling up material from their ...

Astronomers find a cosmic Titan in the early universe

October 17, 2018

An international team of astronomers has discovered a titanic structure in the early Universe, just two billion years after the Big Bang. This galaxy proto-supercluster, nicknamed Hyperion, is the largest and most massive ...

Researchers investigate the peculiar radio source IC 1531

October 17, 2018

An international team of researchers has investigated a peculiar extragalactic radio source known as IC 1531. The new study analyzes the nature of IC 1531's high-energy emission, suggesting that the source is a radio galaxy. ...

Double dust ring test could spot migrating planets

October 17, 2018

New research by a team led by an astrophysicist at the University of Warwick has a way of finally telling whether newly forming planets are migrating within the disc of dust and gas that typically surrounds stars or whether ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.