Researcher works with NASA to study using Martian soil to build human habitats

February 16, 2017
University of Central Florida Professor Sudipta Seal is working with NASA to help future astronauts survive on Mars. Credit: University of Central Florida

It's hard enough to transport humans to Mars. But once they get there, where will they live?

A University of Central Florida professor is working with NASA to figure out a way to extract metals from the Martian soil - metals that could be fed into a 3-D printer to produce the components of a human habitat, ship parts, tools and electronics.

"It's essentially using additive-manufacturing techniques to make constructible blocks. UCF is collaborating with NASA to understand the science behind it," said Pegasus Professor Sudipta Seal, who is interim chair of UCF's Materials Science and Engineering program, and director of the university's Advanced Materials Processing & Analysis Center and NanoScience Technology Center.

NASA and Seal will research a process called molten regolith electrolysis, a technique similar to how metal ores are refined here on Earth. Astronauts would be able to feed Martian soil - known as regolith - into a chamber. Once heated to nearly 3,000 degrees Fahrenheit, the electrolysis process would produce oxygen and molten metals, both of which are vital to the success of future human space exploration. Seal's expertise also will help determine the form those metals should be in that's most suitable for commercial 3-D printers.

NASA intern Kevin Grossman, a graduate student from Seal's group, is also working on the project, which is funded by a NASA grant. Grossman said he hopes future projects in similar areas can grow the current partnership between UCF and the research groups at NASA's Kennedy Space Center.

NASA is already working on sending humans to the Red Planet in the 2030s. The agency has begun developing plans for life-support systems and other technology.

NASA isn't alone. Elon Musk, billionaire founder of SpaceX and Tesla Motors, is working on his own plan. Mars One, a Dutch nonprofit, is touting a plan to send dozens of volunteers from around the world on a one-way trip to colonize Mars.

They all agree that for sustainable Mars exploration to work, they must be able to use resources on Mars that would otherwise require costly transportation from Earth - a concept known as in situ resource utilization. That's where Seal's research comes in.

"Before you go to Mars, you have to plan it out," Seal said. "I think this is extremely exciting."

UCF has a long relationship with NASA, dating back to the first research grant ever received by the university, then known as Florida Technological University.

Other UCF faculty members continue researching in situ resource utilization. Phil Metzger of UCF's Florida Space Institute, is working with commercial space mining company Deep Space Industries to figure out a way to make Martian soil pliable and useful for 3D printing. The same company has tapped Metzger and UCF colleague Dan Britt to develop simulated asteroid regolith that will help them develop hardware for asteroid mining.

Explore further: Dutch firm unveils concept space suit for Mars explorers

Related Stories

Recommended for you

Swarm explores a new feature of the northern lights

April 21, 2017

Thanks to social media and the power of citizen scientists chasing the northern lights, a new feature was discovered recently. Nobody knew what this strange ribbon of purple light was, so … it was called Steve.

Detecting life in the ultra-dry Atacama Desert

April 21, 2017

Few places are as hostile to life as Chile's Atacama Desert. It's the driest non-polar desert on Earth, and only the hardiest microbes survive there. Its rocky landscape has lain undisturbed for eons, exposed to extreme temperatures ...

New look at 2004's martian hole-in-one site

April 21, 2017

A new observation from NASA's Mars Reconnaissance Orbiter (MRO) captures the landing platform that the rover Opportunity left behind in Eagle Crater more than 13 years and 27 miles (or 44 kilometers) ago.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.