
 

Mathematics is beautiful (no, really)

February 20 2017, by Vicky Neale

  
 

  

Fractals in stone by Jami Masjid. Credit: Ankush.sabharwal/wikipedia, CC BY-
SA

For many people, memories of maths lessons at school are anything but
pretty. Yet "beautiful" is a word that I and other mathematicians often
use to describe our subject. How on earth can maths be beautiful – and
does it matter?

For me, as a mathematician, it is hugely important. My enjoyment of the
beauty of mathematics is part of what motivates me to study the subject.
It is also a guide when I am working on a problem: if I think of a few
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strategies, I will choose the one that seems most elegant first. And if my
solution seems clumsy then I will revisit it to try to make it more
attractive.

I've just finished marking a pile of homework from my second-year
mathematics undergraduates. I am struck by two students' contrasting
solutions to one problem. Both solutions are correct, both answer the
question. And yet I much prefer one to the other. It's not just that one is
longer than the other, or that one is explained better than the other (both
are described well, in fact).

The longer one doesn't quite get to the heart of the matter, it's a bit
cluttered with unnecessary distractions. The other uses a different
approach, which captures the essence of the ideas – it helps the reader to
understand why this piece of mathematics works this way, not just that it
does. For a mathematician, the "why" is critical, and we are always
looking for arguments that reveal this.

Some cases of mathematical beauty are clear. Fractals, for example, are
mathematical sets of numbers – corresponding to shapes – that have
striking self-similarity and that have inspired numerous artists.

Less is more

But what about less obvious cases? Let me try to give you an example.
Perhaps you recognise the sequence of numbers 1, 3, 6, 10, 15, 21, 28,
… This is a sequence that students often encounter at school: the 
triangular numbers. Each number in the sequence corresponds to the
number of dots in a sequence of triangles.
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https://en.wikipedia.org/wiki/Fractal
http://www.bbc.co.uk/bitesize/ks3/maths/algebra/number_patterns/revision/5/


 

  

The six first triangular numbers: 1, 3, 6, 10, 15, 21.

Can we predict what the 1000th number in the sequence will be? There
are many ways to tackle this question, and in fact unpicking the
similarities and differences between these approaches is in itself both
mathematical and enlightening. But here is one rather beautiful
argument.

Imagine the 10th number in the sequence (because it's easier to draw the
picture than for the 1000th!). Let's count the dots without counting the
dots. We have a triangle of dots, with 10 in the bottom row and 10 rows
of dots.

If we make another copy of that arrangement, we can rotate it and put it
next to our original triangle of dots – so that the two triangles form a
rectangle. This shape of dots will have 10 in the bottom row and 11
rows, so there are 10 x 11 = 110 dots in total (see figure below). Now we
know that half of those were in our original triangle, so the 10th
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triangular number is 110/2 = 55. And we didn't have to count them.

  
 

  

The 10th triangular number x2.

The power of this mathematical argument is that we can painlessly
generalise to any number – even without drawing the dots. We can do a
thought experiment. The 1000th triangle in the sequence will have 1000
dots in the bottom row, and 1000 rows of dots. By making another copy
of this and rotating it, we get a rectangle with 1000 dots in the bottom
row and 1001 rows. Half of those dots were in the original triangle, so
the 1000th triangular number is (1000 x 1001)/2 = 500500.

For me, this idea of drawing the dots, duplicating, rotating and making a
rectangle is beautiful. The argument is powerful, it generalises neatly (to
any size of triangle), and it reveals why the answer is what it is.
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There are other ways to predict this number. One is to look at the first
few terms of the sequence, guess a formula, and then prove that the
formula does work (for example by using a technique called proof by
induction). But that doesn't convey the same memorable explanation
behind the formula. There is an economy to the argument with pictures
of dots, a single diagram captures everything we need to know.

Here's another argument that I find attractive. Let's think about the sum
below:

  
 

  

The harmonic series.

This is the famous harmonic series. It turns out that it doesn't equal a
finite number – mathematicians say that the sum "diverges". How can
we prove that? It sounds difficult, but one elegant idea does the job.

  
 

  

The harmonic series with grouped terms.
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Here each group of fractions adds up to more than ½. We know that ⅓ is
bigger than ¼. That means (⅓) + (¼) is bigger than (¼) + (¼), which
equals ½. So by adding enough blocks, each bigger than ½, the sum gets
bigger and bigger – we can beat any target we like. By adding an infinite 
number of them we will get an infinite sum. We have tamed the infinite,
with a beautiful argument.

A waiting game?

These are not the most difficult pieces of mathematics. One of the
challenges of mathematics is that tackling more sophisticated problems
often means first tackling more sophisticated terminology and notation. I
cannot find a piece of mathematics beautiful unless I first understand it
properly – and that means it can take a while for me to appreciate the
aesthetic qualities.

I don't think this unique to mathematics. There are pieces of music,
buildings, pieces of visual art where I have not at first appreciated their
beauty or elegance – and it is only by persevering, by grappling with the
ideas, that I have come to perceive the beauty.

For me, one of the joys of teaching undergraduates is watching them
develop their own appreciation of the beauty of mathematics. I'm going
to see my second years this afternoon to go over their homework, and I
already know that we're going to have an interesting conversation about
their different solutions – and that considering the aesthetic qualities will
play a part in deepening their understanding of the mathematics.

School students can have just the same experience: when they're given
the opportunity to engage with rich questions, when they can play with 
mathematical ideas, when they have the chance to experience multiple
strategies to the same question rather than just getting the answer in the
back of the textbook and moving on. The mathematical ideas do not
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https://phys.org/tags/number/
https://phys.org/tags/mathematical+ideas/


 

have to be university level, there are beautiful problems that are perfect
for school students. Happily, there are many maths teachers and maths
education projects that are helping students to have those experiences of
the beauty of mathematics.

This article was originally published on The Conversation. Read the 
original article.
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