Local weather impacts melting of one of Antarctica's fastest-retreating glaciers

February 17, 2017
A satellite image of Antarctica. Credit: USGS, via Wikipedia, Public Domain

Local weather plays an important part in the retreat of the ice shelves in West Antarctica, according to new research published in the journal Nature Communications.

The study led by scientists at the University of East Anglia (UEA) of the Pine Island Glacier (PIG) used a unique five-year record to study how the interactions between the ocean and the atmosphere, as well as changing currents, control how heat is transported to, and beneath, the Pine Island Ice Shelf.

Pine Island Glacier is one of the fastest melting glaciers in Antarctica with some studies suggesting that its eventual collapse is almost inevitable.

Previous research suggested more warm water was circulating under the and melting it more rapidly, leading to an increasing contribution to . However relatively little was known about what drives changes in ocean conditions in this remote part of Antarctica due to its inaccessibility. Some studies suggested that the ocean conditions close to Pine Island Glacier are influenced most strongly by winds at the edge of the continental shelf, some 400 km to the north, which in turn respond to changes in tropical ocean temperatures.

The study looked at the impact of shelf-edge winds and found this to be less direct than previously thought, and that local atmospheric conditions and ocean circulation are the main drivers of ocean temperature changes in the critical 350-700m depth range, over the period of observation.

Dr Ben Webber, oceanographer at UEA's School of Environmental Sciences said: "The ice shelves of the Amundsen Sea - an area of the Southern Ocean - protect much of the West Antarctic Ice Sheet from collapse. These ice shelves are rapidly losing mass and understanding the mechanisms which control ocean conditions and drive melting of these glaciers is hugely important.

"We found a strong annual cycle in the exchange of heat between the ocean and the atmosphere, which drives changes in ocean temperature. While these changes are less evident in deeper waters, through convection and mixing the heat can penetrate deeply enough to have a major impact on melting and influence the temperature of the water entering the cavity under the glacier.

"There was a colder weather period from 2012-13, however, a separate study has shown that this only led to a partial slowdown of the glacier's retreat, and many glaciers in the region have been retreating for decades and aren't slowing down."

Changes in the direction of the ocean currents also cause changes in temperature close to Pine Island Glacier. The colder period was associated with a reversal in the currents that transport heat into and around the bay.

Co-author Dr Povl Abrahamsen, oceanographer at British Antarctic Survey, said: "Most of the ocean data around Antarctica are snapshots of conditions - and many areas are only visited once every one or two years, if that. A continuous five-year time series near Pine Island Glacier, one of the fastest-melting glaciers in Antarctica, lets us see what is happening between these snapshots, giving us insights into the processes driving the melting of Pine Island Glacier."

Dr Webber continued: "It is likely that other around Antarctica that are melting due to warm will also be strongly influenced by local atmospheric conditions. This would underline the importance of atmospheric and monitoring close to the Antarctic coasts to give early warning of future changes in ice shelf melting and glacial retreat."

Explore further: Improved modelling of ice-ocean processes

More information: 'Mechanisms driving variability in the ocean forcing of Pine Island Glacier' Nature Communications, DOI: 10.1038/ncomms14507

Related Stories

Improved modelling of ice-ocean processes

May 19, 2016

Pine Island Glacier in West Antarctica is currently one of the single biggest contributors to sea-level rise with an estimated volume loss of 1.2mm sea-level equivalent per decade. The loss is caused, at least partly, by ...

Image: Glacial 'aftershock' spawns Antarctic iceberg

February 16, 2017

Pine Island Glacier has shed another block of ice into Antarctic waters. The loss was tiny compared to the icebergs that broke off in 2014 and 2015, but the event is further evidence of the ice shelf's fragility.

Recommended for you

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

FactsReallyMatter
1 / 5 (1) Feb 20, 2017
I wonder does local = global here. Does this support AGW, as a local process even in combination with regional process. Doesn't all ice melt due to AGW??

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.