How hydras know where to regrow lost body parts

February 7, 2017, Cell Press
Hydra attached to a substrate. Credit: Coveredinsevindust / Wikipedia

Few animals can match the humble hydra's resilience. The small, tentacled freshwater animals can be literally shredded into pieces and regrow into healthy animals. A study published February 7 in Cell Reports suggests that pieces of hydras have structural memory that helps them shape their new body plan according to the pattern inherited by the animal's "skeleton." Previously, scientists thought that only chemical signals told a hydra where its heads and/or feet should form.

Regenerating hydras use a network of tough, stringy protein fibers, called the , to align their cells. When pieces are cut or torn from hydras, the cytoskeletal pattern survives and becomes part of the new animal. The pattern generates a small but potent amount of mechanical force that shows cells where to line up. This mechanical force can serve as a form of "memory" that stores information about the layout of animal bodies. "You have to think of it as part of the process of defining the pattern and not just an outcome", says senior author, biophysicist Kinneret Keren of the Technion- Israel Institute of Technology.

When pieces of hydra begin the regeneration process, the scraps of hydra fold into little balls, and the cytoskeleton has to find a balance between maintaining its old shape and adapting to the new conditions. "If you take a strip or a square fragment and turn it into a sphere, the fibers have to change or stretch a lot to do that," explains Keren. However, some portions retain their pattern. As the little hydra tissue ball stretches into a tube and grows a tentacle-ringed mouth, the new body parts follow the template set by the cytoskeleton in fragments from the original hydra.

This video shows the regeneration of a hydra, starting with the ball stage all the way through full development. Credit: Livshits and Shani-Zerbibet al.

The main cytoskeletal structure in adult hydra is an array of aligned fibers that span the entire organism. Tampering with the cytoskeleton is enough to disrupt the formation of new hydras, the researchers found. In many ways, the cytoskeleton is like a system of taut wires that helps the hydra keep its shape and function. In one experiment, the researchers cut the original hydra into rings which folded into balls that contained multiple domains of aligned fibers. Those ring-shaped pieces grew into two-headed hydras. However, anchoring the hydra rings to stiff wires resulted in healthy one-headed hydras, suggesting that mechanical feedbacks promote order in the developing animal.

Hydras are much simpler than most of their cousins in the animal kingdom, but the basic pattern of aligned cytoskeletal fibers is common in many organs, including human muscles, heart, and guts. Studying regeneration may lead to a better understanding of how mechanics integrate with biochemical signals to shape tissues and organs in other species. "The actomyosin cytoskeleton are the main force generator across the animal kingdom," says Keren. "This is very universal."

This video shows a two-headed hydra growing alongside a one-headed hydra. The wire underneath the one-headed hydra helped to stabilize the growth along the body axis. Credit: Livshits and Shani-Zerbibet al.

This video shows the cytoskeleton rearranging as the hydra grows and elongates. Credit: Livshits and Shani-Zerbibet al.

Explore further: Meet hydra, the shape-shifting Dr Manhattan of the animal kingdom

More information: Cell Reports, Livshits and Shani-Zerbibet al.: "Structural inheritance of the actin cytoskeletal organization determines the body axis in regenerating Hydra" http://www.cell.com/cell-reports/fulltext/S2211-1247(17)30073-6 , DOI: 10.1016/j.celrep.2017.01.036

Related Stories

Biophysicists discover how hydra opens its mouth

March 8, 2016

A team of biologists and physicists at UC San Diego has uncovered in detail the dynamic process that allows the multi-tentacle Hydra, a tiny freshwater animal distantly related to the sea anemone, to open and close its mouth.

Earthquake model explains Hydra's regenerative prowess

April 30, 2012

When the Greek hero Hercules sliced through one of the Lernaean Hydra's nine heads, two grew back in its place. This mythical creature's real life counterparts, a genus of tiny cylindrical animals known as Hydra, have equally ...

Researchers discover the dawn of animal vision

October 17, 2007

The findings are published in this week’s issue of the scientific journal PLoS ONE. The scientists studied the aquatic animal Hydra, a member of Cnidaria, which are animals that have existed for hundreds of millions of ...

Pluto's moon Hydra

July 14, 2015

In 1930, Pluto was observed for the first time. For many decades, astronomers thought that the "ninth planet of the Solar System" was a solitary object. But by 1978, astronomers discovered that it also had a moon roughly ...

Hydra can modify its genetic program

November 23, 2015

Champion of regeneration, the freshwater polyp Hydra is capable of reforming a complete individual from any fragment of its body. It is even able to remain alive when all its neurons have disappeared. Researcher the University ...

Recommended for you

Hormone keys plant growth or stress tolerance, but not both

January 17, 2018

Plants that grow well tend to be sensitive to heat and drought, and plants that can handle those stresses often have stunted growth. A Purdue University plant scientist has found the switch that creates that antagonism, opening ...

Circadian regulation in the honey bee brain

January 17, 2018

Circadian clocks regulate the behaviour of all living things. Scientists from the University of Würzburg have now taken a closer look at the clock's anatomical structures and molecular processes in the honeybee.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

betterexists
not rated yet Feb 07, 2017
Make Chimera of Hydra & some other coelenterate that does not regenerate. Then, see what happens,

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.