Algae survive heat, cold and cosmic radiation

February 1, 2017, Fraunhofer-Gesellschaft
The many different organisms from all participating partners were all mounted in such trays and then exposed to space on the outside of the ISS for one and a half years. Credit: ESA/ROSCOSMOS

In a long-term experiment on the International Space Station, Fraunhofer researchers studied how the extreme conditions in space affect algae. Fraunhofer conducted this experiment in close cooperation with German and international partners. Research findings could benefit industrial applications and perhaps a mission to Mars.

They're alive! Two algae survived 16 months on the exterior of the International Space Station ISS despite extreme temperature fluctuations and the vacuum of space as well as considerable UV and cosmic radiation. That was the astonishing result of an experiment conducted by Dr. Thomas Leya at the Fraunhofer Institute for Cell Therapy and Immunology IZI in Potsdam in cooperation with German and international partners. This labor-intensive experiment was part of the large-scale Biology and Mars Experiment (BIOMEX), a project coordinated by Dr. Jean-Pierre de Vera at the German Aerospace Center (DLR) in Berlin. Dr. Leya himself had isolated the green algal strain CCCryo 101-99 of Sphaerocystis sp. on Svalbard, a Norwegian archipelago, and prepared it together with the cyanobacterium Nostoc sp. (CCCryo 213-06), a blue-green alga from Antarctica. CCCryo stands for Culture Collection of Cryophilic Algae. Nostoc sp. and Sphaerocystis sp. are examples of cold-loving, or cryophilic, strains. They have special adaptation strategies to oppose cold and desiccation, allowing them to survive even under extreme conditions.

Dr. Leya heads the Extremophile Research & Biobank CCCryo Working Group at Fraunhofer's Bioanalytics and Bioprocesses IZI-BB branch in Potsdam. For the past 18 years, the group has been studying the survival strategies of cryophilic algae, cyanobacteria, mosses, fungi and bacteria found in polar regions. Researchers had already ascertained in the laboratory that algae are largely unsusceptible to long-term desiccaton stress, extreme temperatures or UV radiation. Yet the of near-Earth orbit cannot be fully simulated in labs.

After their return from the ISS almost all samples developed into new populations. The green alga (top 2 rows) also developed orange-coloured resting stages, whilst typically blue-green pigmented colonies were developed by the cyanobacterium (bottom 2 rows). Credit: Thomas Leya / Fraunhofer IZI-BB
"We slightly desiccated the algal strains in preparation for their time in space," ex-

plains Dr. Leya. A Progress spacecraft transported the organisms into space on July 23, 2014, and a Soyuz capsule returned the algal cultures to Earth. All in all, they had to endure some 16 months on the outside of the ISS – with only neutral-density filters reducing the effects of radiation. Sensors measured and logged temperature changes and amounts of cosmic radiation.

Algae survive heat, cold and cosmic radiation
The various specimens of green-alga strain CCCryo 101-99 again grew new populations after gliding in low-Earth orbit for 450 days on the outside of the ISS. Only one specimen did not survive its space flight. Credit: Thomas Leya / Fraunhofer IZI-BB
DNA of ISS algae examined

Researchers will now scrutinize the adaptation strategies of the blue and . Because UV radiation can damage human DNA, the Technische Universität Berlin and the DLR are studying the DNA of the ISS algae to determine whether it was damaged and, if so, to what extent. They are also using spectroscopic techniques to analyze the biomarkers of carotenoids in the algae. Experts use the term "biomarker" to refer to any biomolecules and their measurable characteristics. These findings are significant in many ways – including a mission to Mars someday. The production of food on Mars would be essential for survival, should people colonize the Red Planet in the distant future. Algae produce oxygen and proteins, making them a good source of food; particularly hardy strains could be grown in special greenhouses or semitransparent tents.

Researchers are also curious to know if, millions of years ago, organisms or early life forms from space perhaps gave rise to life on Earth. Early forms of life might have reached Earth via meteorites. This theory of panspermia, as it is known, might experience a revival thanks to the ISS algae experiments.

Algae survive heat, cold and cosmic radiation
Preparation of algae for the experiments outside the ISS. Credit: Thomas Leya / Fraunhofer IZI-BB
Components of algae as nutritional supplements and sun protection

Various industries will likewise benefit from the findings of the ISS algae experiment. Possibly cosmetics manufacturers will soon be able to manufacture UV-protection creams that contain components of algae. For the food industry, contain appealing nutritional supplements thanks to their efficient repair mechanisms and high content of omega-3 fatty acids such as eicosapentaenoic acid (EPA). Appropriate manufacturing methods are still very costly, but should become commercially viable in the near future.

Dr. Leya has collected nearly 500 algal and other organisms in polar regions and other extreme localities worldwide. But experts believe that well over one hundred thousand species exist – of which only a fraction has been identified. This means chances are good that these underestimated organisms will provide another surprise or two.

Explore further: Why cryptophyte algae are really good at harvesting light

Related Stories

Why cryptophyte algae are really good at harvesting light

December 8, 2016

In an algae-eat-algae world, it's the single-celled photosynthetic organisms at the top (layer of the ocean) that absorb the most sunlight. Underneath, in the sublayers, are cryptophyte algae that must compete for photons ...

Toxic 'marine snow' can sink quickly, persist at ocean depths

November 28, 2016

In a new study, researchers from North Carolina State University found that a specific neurotoxin can persist and accumulate in "marine snow" formed by the algae Pseudo-nitzschia, and that this marine snow can reach significant ...

Five things to know about toxic algae

July 8, 2016

A massive bloom of blue-green algae has hit four counties in Florida covering beaches along the Atlantic coast with foul-smelling, thick muck.

Climate change seems unfavourable for toxic blue algae

September 5, 2011

The earth is warming up due to rising carbon dioxide concentrations in the atmosphere. NWO-funded researchers have discovered that the increase in carbon dioxide can reduce the nuisance caused by toxic blue algae, a bacterium ...

Novel testing device for detecting toxic blue-green algae

June 24, 2013

VTT Technical Research Centre of Finland has developed a fast and affordable testing device for detecting the presence of toxic blue-green algae in water. There is currently no fast, affordable and user-friendly way for consumers ...

Recommended for you

Galactic center visualization delivers star power

March 21, 2019

Want to take a trip to the center of the Milky Way? Check out a new immersive, ultra-high-definition visualization. This 360-movie offers an unparalleled opportunity to look around the center of the galaxy, from the vantage ...

Ultra-sharp images make old stars look absolutely marvelous

March 21, 2019

Using high-resolution adaptive optics imaging from the Gemini Observatory, astronomers have uncovered one of the oldest star clusters in the Milky Way Galaxy. The remarkably sharp image looks back into the early history of ...

When more women make decisions, the environment wins

March 21, 2019

When more women are involved in group decisions about land management, the group conserves more—particularly when offered financial incentives to do so, according to a new University of Colorado Boulder study published ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.