Ultra-fast, ultra-sensitive PtSe2 gas sensors

January 13, 2017, Graphene Flagship
PtSe2 gas sensor chip. Credit: Trinity College Dublin

Researchers from Trinity College Dublin, Ireland have shown that PtSe2, a little-studied transition metal dichalcogenide has potential for a variety of uses. In particular, PtSe2 is an excellent high performance gas sensor, and fabrication is compatible with silicon chip foundrys.

Researchers from the Graphene Flagship, working at the AMBER centre in Trinity College Dublin, Ireland in collaboration with researchers from University of Siegen, Germany, and University of Vienna, Austria, have demonstrated ultrafast and highly sensitive using platinum selenide (PtSe2). This material – a transition metal dichalcogenide (TMD) – has promising potential in different areas of nanoelectronics, including optoelectonics as well as sensing. This research, published in ACS Nano, demonstrates the potential of PtSe2 in a range of applications, and presents this little-studied material as an excellent candidate for further investigation.

The new TMD was created using a metal conversion method, in which thin platinum film is converted into PtSe2 by thermally assisted conversion in selenium vapour at 400 °C. PtSe2 now joins the growing class of stable TMDs. Georg Duesberg, from Trinity College Dublin, is the principal investigator of the study. He said "We performed a screening study of materials, to check a few different material combinations. The conversion of metals is helpful in the quest for new materials, because it is simple to do. Of the other combinations that worked, many immediately oxidised, so they were not stable. We were very lucky to find a sweet spot with this material, and to be able to synthesise it on a large scale."

One of the benefits of PtSe2 is the method of fabrication, which is compatible with fabrication. "We grow PtSe2 at 400 °C which makes it potentially suitable for so-called back end of line (BEOL) processing. This means that it can be combined with existing device architectures to add new functionality," said Niall McEvoy, a researcher at Trinity College Dublin who performed the growth experiments. BEOL processing comes after the actual fabrication of integrated circuits of a silicon chip, It is crucial that the temperature is less than 450 °C, to preserve the functionality of the integrated circuit. "This is very interesting for the Flagship's push towards industrial applications," added Duesberg. "This potentially can be grown on top of a chip. You can imagine using this material for the Internet of Things, sensors and so on."

To demonstrate possible applications for the new material, the researchers tested its performance in sensing NO2. "All of our homegrown materials are tested as gas sensors. PtSe2 showed excellent results, high sensitivity, excellent response time and nearly complete recovery," said Kangho Lee, a researcher at Trinity College Dublin who performed the gas sensing experiments. Gas molecules adsorbed onto the surface of the PtSe2 change its conductivity, lowering the resistance. The researchers found that the PtSe2 had extremely high sensitivity, measuring 100 ppb NO2 at room temperature. The sensor was also extremely fast to respond to the gas – detecting low quantities of gas in only seconds – and recovering completely within a minute when the inert atmosphere was restored.

For commercial sensing applications, the sensor must be responsive only to specific gases, so that changes in environmental conditions can be monitored. McEvoy is optimistic that the PtSe2 can be treated to have the selective sensing properties needed. "With some added processing steps, to engender selectivity, PtSe2 could potentially be used in a wide array of industrial chemical sensing applications," he said. A potential route to selective sensing could be the addition of chemical groups that are responsive to the chosen gas.

Explore further: State of the art sensors made from graphene and children's toy silly putty

More information: Chanyoung Yim et al. High-Performance Hybrid Electronic Devices from Layered PtSeFilms Grown at Low Temperature, ACS Nano (2016). DOI: 10.1021/acsnano.6b04898

Related Stories

Atom-thick sheets unlock future technologies

February 3, 2011

(PhysOrg.com) -- A new way of splitting layered materials, similar to graphite, into sheets of material just one atom thick could lead to revolutionary new electronic and energy storage technologies.

World's smallest shamrock created by scientists

March 17, 2014

AMBER, Ireland's national materials science centre based in Trinity College Dublin has etched a nano sized shamrock whose stem is approximately 200,000 times smaller than a grain of salt. The shamrock, 500 of which could ...

Recommended for you

Paleontologists report world's biggest Tyrannosaurus rex

March 22, 2019

University of Alberta paleontologists have just reported the world's biggest Tyrannosaurus rex and the largest dinosaur skeleton ever found in Canada. The 13-metre-long T. rex, nicknamed "Scotty," lived in prehistoric Saskatchewan ...

NASA instruments image fireball over Bering Sea

March 22, 2019

On Dec. 18, 2018, a large "fireball—the term used for exceptionally bright meteors that are visible over a wide area—exploded about 16 miles (26 kilometers) above the Bering Sea. The explosion unleashed an estimated 173 ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.